Токуо Ј. Матн. Vol. 12, No. 1, 1989

The Rate of Convergence for Approximate Solutions of Stochastic Differential Equations

Shûya KANAGAWA

Yamanashi University (Communicated by S. Koizumi)

§1. Introduction and results.

Let (Ω, \mathscr{F}, P) be a probability space and $B := \{B(t), t \ge 0\} = \{(B^1(t), B^2(t), \dots, B^r(t)), t \ge 0\}$ an r-dimensional standard Brownian motion on it $(r \ge 1)$. We consider a stochastic differential equation (abbreviated by SDE) for a d-dimensional continuous process $X := \{X(t), 0 \le t \le 1\}$ $(d \ge 1)$:

(1.1) $dX(t) = \sigma(t, X(t))dB(t) + b(t, X(t))dt,$

with $X(0) \equiv X_0$, where $\sigma(t, x) = \{\sigma_i^j(t, x), 1 \leq i \leq r, 1 \leq j \leq d\}$ is a Borel measurable function $(t, x) \in [0, 1] \times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^r$ and $b(t, x) = \{b^j(t, x), 1 \leq j \leq d\}$ is a Borel measurable function $(t, x) \in [0, 1] \times \mathbb{R}^d \to \mathbb{R}^d$. Suppose that $\sigma(\cdot, \cdot)$ and $b(\cdot, \cdot)$ satisfy the following Lipschitz conditions: For any $x, y \in \mathbb{R}^r$ and $t, s \in [0, 1]$ there exists a positive constant L_1 independent of x, y, s and t such that

(1.2)
$$|\sigma(t, x) - \sigma(s, y)|^2 + |b(t, x) - b(s, y)|^2 \leq L_1^2(|x - y|^2 + |t - s|^2).$$

where

$$|a|^2 := \sum_{i=1}^r \sum_{j=1}^d |a_i^j|^2$$
 for $a \in \mathbb{R}^d \otimes \mathbb{R}^r$

and $|\cdot|$ denotes the Euclidean norm. Then there exists a unique solution of the SDE (1.1) (see, for example, Ikeda-Watanabe [8]). Approximate solutions for (1.1) were constructed by Maruyama [9], and its rate of convergence was studied by Gihman-Skorokhod [2] and Shimizu [17] (see also Greenside-Helfand [4], Janković [5], Janssen [6], Milshtein [10], Platen [11], [12], Rao-Borwanker-Ramkrishna [14], Rümelin [15], Wright [18]). In [2] and [17] on the rate of convergence, approximate solutions are

Received October 14, 1987 Revised November 25, 1988