Токуо Ј. Матн. Vol. 12, No. 2, 1989

3-Dimensional Fano Varieties with Canonical Singularities

Kil-Ho SHIN

University of Tokyo (Communicated by N. Iwahori)

§0. Introduction.

In this article by a variety we mean an irreducible reduced projective variety over the field of complex numbers.

Let X be a 3-dimensional Fano variety with canonical singularities and H be a Cartier divisor satisfying $-K_x \sim r(X)H$ for the index r(X)of X. The purpose of this article is to study the rational map $\Phi_{|H|}$ and singularities of a general member of |H|. In particular in the case of r(X)=2, which is the most essential, we find $\Phi_{|H|}$ to be as follows. (1) When $d=H^3\geq 3$, a closed immersion into P^{d+1} .

(2) When d=2, a double covering over P^3 .

And

(3) when d=1, a rational map that is defined except exactly one point and the closure of whose general fiber is a smooth elliptic curve.

And furthermore a general member S of |H| has rational double points at $S \cap \text{Sing}(X)$.

(0.1) DEFINITION. A variety V is called a Fano variety whenever the following conditions are satisfied.

- (1) V is normal.
- (2) V is Gorenstein, i.e. K_v is a Cartier divisor.
- (3) The anticanonical divisor $-K_v$ is ample.

(0.2) DEFINITION. For an *n*-dimensional Fano variety V, we define the *index* of V to be max{ $m \in \mathbb{Z} \mid \exists$ a Cartier divisor H such that $-K_v \sim mH$ }.

When V is an *n*-dimensional Fano variety, we use the following notation.

Received October 27, 1988 Revised June 28, 1989