## On the Action of Hecke Rings on Homology Groups of Smooth Compactifications of Siegel Modular Varieties and Siegel Cusp Forms

## Kazuyuki HATADA

Gifu University
(Communicated by K. Katase)

## Introduction and notations.

Let  $g \ge 1$  and  $N \ge 3$  be rational integers. We use the same notations as in Hatada [9]. Recall

 $1_g = \text{the } g \times g \text{ unit integral matrix; } J_g = \begin{bmatrix} 0 & -1_g \\ 1_g & 0 \end{bmatrix};$ 

 $\Gamma = \Gamma_g(N) =$ the principal congruence subgroup of level N of  $\mathrm{Sp}(g, \mathbf{Z})$  ( $\subset \mathrm{GL}(2g, \mathbf{Z})$ );

 $\mathfrak{F}_g$  = the Siegel upper half plane of degree g;

 $\Gamma \setminus \mathfrak{F}_g$  denotes the usual complex analytic quotient space;

GSp<sup>+</sup> $(g, \mathbf{R}) = \{ \gamma \in GL(2g, \mathbf{R}) \mid {}^t \gamma J_g \gamma J_g^{-1} \text{ is a scalar matrix whose eigenvalue is positive.} \};$ 

 $r(\alpha)$  = the eigenvalue of  ${}^t\alpha J_g\alpha J_g^{-1}$  for  $\alpha\in\mathrm{GSp}^+(g,\mathbf{R})$ ;

 $GSp^+(g, \mathbf{Z}) = \{ \gamma \in GSp^+(g, \mathbf{R}) \mid \gamma \text{ is an integral matrix.} \};$ 

 $\operatorname{GSp}^+(g,\,\boldsymbol{Q}) = \operatorname{GSp}^+(g,\,\boldsymbol{R}) \cap \operatorname{GL}(2g,\,\boldsymbol{Q});$ 

 $HR(\Gamma, \operatorname{GSp}^+(g, \mathbf{Z}))$  = the Hecke ring with respect to the group  $\Gamma$  and the monoid  $\operatorname{GSp}^+(g, \mathbf{Z})$ , cf. Hatada [8] and [9].

We consider the toroidal compactification of  $\Gamma \setminus \mathfrak{F}_g$ . We fix a regular and projective  $\operatorname{Sp}(g, \mathbb{Z})$ -admissible family of polyhedral cone decompositions:  $\Sigma = \{\Sigma_{\alpha}\}_{F_{\alpha}: \text{ rational components}}$  once for all. For example here we take a suitable refinement of the second Voronoi decomposition (cf. Namikawa [13], [14]). We write  $(\Gamma \setminus \mathfrak{F}_g)^{\sim}$  for the projective smooth toroidal compactification of  $\Gamma \setminus \mathfrak{F}_g$  with respect to this  $\Sigma$ . Write  $M = (\Gamma \setminus \mathfrak{F}_g)^{\sim}$  for simplicity in this paper. For  $\Gamma = \Gamma_g(N)$ , define

 $\Gamma' = \{ \xi \in \operatorname{Sp}(g, \mathbb{Z}) \mid \xi \pmod{N} \text{ is a } 2g \times 2g \text{ diagonal matrix with coefficients in } \mathbb{Z}/N\mathbb{Z}. \}$