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J. H. Conway introduced the potential function of a link in [3], and
its invariance was verified by R. Hartley in [6]. Therefore we are not
interested in its detailed definition in this note. We will try to give a
recursive calculation of the potential functions of multi-variables. In
fact we will succeed in giving it for the case of three variables as in
Main Theorem. In other words, we will get a machine which makes any
link into several links by a finite sequence of replacements appearing in
Conway’s three Identities for the case of three variables.

When we look back upon the past, we become aware that the ex-
istence of machines, which make any link into trivial knots by a finite
sequence of replacements appearing in Conway’s First Identity, has recently
produced new polynomial invariants of links: the Jones polynomial and
the skein polynomial [2, 4, 7, 8, 12, 14]. If we will get a machine for
the case of multi-variables, it is possible to get a new (component-wise)
link invariant.

For an ordered and oriented link in $S^{8},$ $L=K_{1}\cup\cdots\cup K_{\mu}$ , we suppose
that every component $K_{i}$ is labeled by $t_{j(i)}$ . The potential function $\nabla_{L}=$

$\nabla_{L}(t_{1}, \cdots)$ has the following characterization [3], [6].
(I) (First Identity) For three links $L_{+},$ $L_{-}$ and $L_{0}$ which differ only

in one place as shown in Fig. 1, the potential function satisfies
$\nabla_{L+}=\nabla_{L-}+(t_{i}-t_{i}^{-1})\nabla_{L_{0}}$ .

(II) (Second Identity) For three links $L_{++},$ $L_{--}$ and $L_{00}$ which differ
only in one place as shown in Fig. 2 (a) or alternatively (b), the potential
function satisfies
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