Construction of Vector Bundles and Reflexive Sheaves

Hidetoshi MAEDA

Waseda University
(Communicated by S. Suzuki)

§ 0. Introduction.

Let X be a smooth algebraic variety defined over a (not necessarily algebraically closed) field k. Let E be a vector bundle on X of rank r-1 ($r \ge 2$). Given a vector bundle F of rank r on X and an injection $\sigma: E \to F$, we can consider the closed subscheme $D(\sigma) = \{x \in X \mid \operatorname{rank} \sigma(x) < r-1\}$ of X. In §1, we discuss the relation between vector bundles and these closed subschemes associated with them. Our result is summarized as follows:

THEOREM (1.7). Fix a vector bundle E as above and a line bundle L on X, and set $M = \det E$. Let \mathscr{F} be the set of pairs (F, σ_F) , where F is a vector bundle on X of rank r with $\det F = L$, and $\sigma_F : E \to F$ is an injection with $D(\sigma_F)$ of pure codimension 2. Let \mathscr{G} be the set of pairs (Y, τ_Y) , where Y is a Cohen-Macaulay closed subscheme of X of pure codimension 2, and $\tau_Y : E^{\vee} \to \omega_Y(-K_X + M - L)$ is a surjection. Then there exists a map $f : \mathscr{F} \to \mathscr{G}$ which is surjective in case $h^2(E(M-L)) = 0$. (See (1.5), (1.6) and (1.7) for the precise statements.)

This theorem includes a result of Vogelaar [V] as a special case in which the following conditions are satisfied:

- (1) X is a projective variety over an algebraically closed field,
- $(2) \quad E = \mathscr{O}_X^{\oplus r-1},$
- (3) Y is a locally complete intersection.

So our result is a generalization of that of Vogelaar's. We note that the above theorem also provides a way for constructing vector bundles. As an application, in $\S 2$, we will construct an indecomposable vector bundle of rank 3 on P^3 which can never be obtained by Vogelaar's method.

In §3, we describe a method for constructing reflexive sheaves from