Examples on an Extension Problem of Holomorphic Maps and a Holomorphic 1-Dimensional Foliation

Masahide KATO

Sophia University

§ 0. Introduction.

Let C^2 be the two dimensional complex vector space with a standard system of coordinates $z=(z_1, z_2)$. Put

$$B = \{z \in C^2 : |z| < 1\}$$
 , $\partial B(\varepsilon) = \{z \in C^2 : 1 - \varepsilon < |z| < 1\}$, $\Sigma_1 = \{z \in C^2 : |z| = 1\}$, and $\Sigma_2 = \{z \in C^2 : |z| = 1 - \varepsilon\}$,

where ε is a constant such that $0<\varepsilon<1$, and

$$|z|^2 = |z_1|^2 + |z_2|^2$$
.

In this note, first we shall construct compact complex 3-folds M which admit a holomorphic map

$$f: \partial B(\varepsilon) \longrightarrow M$$

such that the inner boundary Σ_2 of $\partial B(\varepsilon)$ is a natural boundary of f. That is, for any point $x \in \Sigma_2$, we cannot find any neighborhood W of x in C^2 such that f can be extended to a holomorphic map of $W \cup \partial B(\varepsilon)$ into M. Secondly, we study a 1-dimensional holomorphic foliation on the associated projective bundle P(TM) of the tangent bundle TM. We shall show that in P(TM) there are a subdomain W, $P(TM) - [W] \neq \emptyset$, and a thin subset S of P(TM) - [W] such that every leaf in W is biholomorphic to P^1 and all compact leaves outside [W] are contained in S, where [W] indicates the closure of W in P(TM).

In § 1, we shall construct our compact complex 3-fold M. In § 2, we shall prove the non-extendibility of a certain holomorphic map into M (see also [2]). In § 3, we study the holomorphic foliation on P(TM).