Classifying 3-Dimensional Lens Spaces by Eta-Invariants

Kiyoshi KATASE

Gakushuin University

Dedicated to Professor Akio Hattori on his sixtieth birthday

Let C^2 be the space of pairs (z_0, z_1) of complex numbers with the standard flat Kähler metric. Let p be a positive integer and q_0, q_1 be integers relatively prime to p. Put $z = \exp \frac{2\pi \nu / -1}{p}$ and define an isometry q of C^2 by

$$g: (z_0, z_1) \longrightarrow (z^{q_0}z_0, z^{q_1}z_1)$$
.

Then g generates a cyclic subgroup $G = \{g^k\}_{k=0,1,\dots,p-1}$ of the unitary group U(2) and the elements g^k act on the unit sphere

$$S^3 = \{(z_0, z_1) \in C^2; z_0\overline{z}_0 + z_1\overline{z}_1 = 1\}$$

without fixed point. The differentiable manifold S^s/G has a unique riemannian metric so that the covering projection $\varphi: S^s \to S^s/G$ gives a local isometry of S^s onto S^s/G . This riemannian manifold S^s/G is called a lens space and is denoted by $L(p; q_0, q_1)$.

The following theorem on lens spaces is well known. (See Cohen [3].)

THEOREM. The following assertions are equivalent:

- (1) $L(p; q_0, q_1)$ is isometric to $L(p; \overline{q}_0, \overline{q}_1)$.
- (2) $L(p; q_0, q_1)$ is diffeomorphic to $L(p; \overline{q}_0, \overline{q}_1)$.
- (3) $L(p; q_0, q_1)$ is homeomorphic to $L(p; \overline{q}_0, \overline{q}_1)$.
- (4) There are integers l and $e_i \in \{-1, 1\}$ (i=0, 1) such that (q_0, q_1) is a permutation of $(e_0l\overline{q}_0, e_1l\overline{q}_1)$.

Since g^k is also a generator of G, the lens space $L(p; kq_0, kq_1)$ is identical to $L(p; q_0, q_1)$. Hence, choosing a suitable generator for G, we