Токуо Ј. Матн. Vol. 13, No. 2, 1990

On the Equation $s(1^k+2^k+\cdots+x^k)+r=by^z$

Hiroyuki KANO

Keio University (Communicated by Y. Ito)

§1. Introduction.

We consider the equation

$$s(1^k+2^k+\cdots+x^k)+r=by^z$$
 (1)

where b, s, r, and k are integer constants and investigate the conditions under which we can assert that the equation has only finitely many solutions in integers x>0, $y\ge 2$, and $z\ge 2$.

This was proved by K. Györy, R. Tijdeman and M. Voorhoeve [4] in the case $b \neq 0$, k > 0, s=1, and r arbitrary, provided that $k \notin \{1, 3, 5\}$. They also stated the same condition when s is a certain squarefree odd integer.

B. Brindza [2] proved the assertion in the case when s is squarefree and $z \notin \{1, 2, 3, 4, 6\}$ or if s is odd and $k \notin \{1, 2, 3, 5\}$.

In this paper, we obtain new conditions on k, r, and s which allow us to show that (1) has only finitely many solutions in integers x>0, $|y|\geq 2$, and $z\geq 2$.

$\S 2.$ **Results.**

For an integer $n \neq 0$ and a prime p, there exists an integer $m \ge 0$ for which $p^m \parallel n$. Then we put $\nu_p(n) = m$ and define, for a nonzero rational number $\alpha = m/n$ with $m, n \in \mathbb{Z}$,

$$\nu_p(\alpha) = \nu_p(m) - \nu_p(n)$$

which depends only on α . Also we write $\operatorname{num} \alpha = m$ and $\operatorname{den} \alpha = n$ for a rational number $\alpha = m/n$ with $m, n \in \mathbb{Z}, n > 0$, and (m, n) = 1, where (m, n) denotes the greatest common divisor of m and n.

THEOREM. For given integers $b \neq 0$, $r \neq 0$, $s \neq 0$, and k > 0, the equation Received January 31, 1990