Time Reversal of Random Walks in R^d

Hiroshi TANAKA

Keio University

Introduction.

The purpose of this paper is to give an extension, to a higher dimensional case, of the result [3] concerning time reversal of random walks.

Suppose we are given a pseudo-order \lhd in R^d such that $x \lhd y$ implies $x+z \lhd y+z$ for any $z \in R^d$. We write $x \blacktriangleleft y$ if $x \lhd y$ and $x \ne y$, and put $K = \{x \in R^d : 0 \lhd x\}$. Then $x \lhd y$ if and only if $y-x \in K$. The set K contains 0 and satisfies

$$(1) x+y\in K if x, y\in K.$$

Throughout the paper we assume that the set K is infinite and Borel. Given a random walk $S_n = \sum_{k=1}^n X_k$ in \mathbb{R}^d , we define a random time τ by

$$\tau = \min\{n \ge 1 : S_n \blacktriangleleft S_k \text{ for } 0 \le \forall k \le n-1\},$$

and assume that $\tau < \infty$ a.s. One more assumption, which is technical and might probably be removed, is that the random walk is countably valued, namely, if Γ denotes the (countable) set of x such that $P\{X_k=x\}>0$ then

$$(3) P\{X_k \in \Gamma\} = 1.$$

Next we consider the time reversal

$$(4) (0, S_{\tau-1}-S_{\tau}, S_{\tau-2}-S_{\tau}, \dots, S_{1}-S_{\tau}, -S_{\tau})$$

and regard this as a (finite length) path-valued random variable. Taking independent copies w_k , $k \ge 1$, of (4), we define a process $\{W_n, n \ge 0\}$ by (1.1). Then our main result is that $\{W_n, n \ge 0\}$ is a Markov chain with transition function $\hat{p}_{\xi}(x, y)$ given by (1.3). The result of [3] is a special