Time Reversal of Random Walks in \boldsymbol{R}^{d}

Hiroshi TANAKA

Keio University

Introduction.

The purpose of this paper is to give an extension, to a higher dimensional case, of the result [3] concerning time reversal of random walks.

Suppose we are given a pseudo-order \triangleleft in R^{d} such that $x \triangleleft y$ implies $x+z \triangleleft y+z$ for any $z \in R^{d}$. We write $x \triangleleft y$ if $x \triangleleft y$ and $x \neq y$, and put $K=\left\{x \in \boldsymbol{R}^{d}: 0 \triangleleft x\right\}$. Then $x \triangleleft y$ if and only if $y-x \in K$. The set K contains 0 and satisfies

$$
\begin{equation*}
x+y \in K \quad \text { if } \quad x, y \in K \tag{1}
\end{equation*}
$$

Throughout the paper we assume that the set K is infinite and Borel. Given a random walk $S_{n}=\sum_{k=1}^{n} X_{k}$ in \boldsymbol{R}^{d}, we define a random time τ by

$$
\begin{equation*}
\tau=\min \left\{n \geqq 1: S_{n} \not \subset S_{k} \text { for } 0 \leqq \forall k \leqq n-1\right\} \tag{2}
\end{equation*}
$$

and assume that $\tau<\infty$ a.s. One more assumption, which is technical and might probably be removed, is that the random walk is countably valued, namely, if Γ denotes the (countable) set of x such that $P\left\{X_{k}=x\right\}>0$ then

$$
\begin{equation*}
P\left\{X_{k} \in \Gamma\right\}=1 . \tag{3}
\end{equation*}
$$

Next we consider the time reversal

$$
\begin{equation*}
\left(0, S_{\tau-1}-S_{\tau}, S_{\tau-2}-S_{\tau}, \cdots, S_{1}-S_{\tau},-S_{\tau}\right) \tag{4}
\end{equation*}
$$

and regard this as a (finite length) path-valued random variable. Taking independent copies $w_{k}, k \geqq 1$, of (4), we define a process $\left\{W_{n}, n \geqq 0\right\}$ by (1.1). Then our main result is that $\left\{W_{n}, n \geqq 0\right\}$ is a Markov chain with transition function $\hat{p}_{\xi}(x, y)$ given by (1.3). The result of [3] is a special

[^0]
[^0]: Received October 27, 1989

