Токуо Ј. Матн. Vol. 13, No. 2, 1990

Surfaces with Constant Kaehler Angle All of Whose Geodesics Are Circles in a Complex Space Form

Sadahiro MAEDA and Seiichi UDAGAWA

Kumamoto Institute of Technology and Nihon University (Communicated by K. Ogiue)

Dedicated to Professor Tadashi Nagano on his sixtieth birthday

§0. Introduction.

Let $f: M \to \tilde{M}$ be an isometric immersion of a connected complete Riemannian manifold M into a Riemannian manifold \tilde{M} . We call M a *circular geodesic* submanifold of \tilde{M} provided that for every geodesic γ of M the curve $f \circ \gamma$ is a circle in \tilde{M} . The following problem is still open: Classify circular geodesic submanifolds M in a complex space form (for details, see [7]).

The purpose of this paper is to consider this problem in the case of dim M=2.

§1. Preliminaries.

A Riemannian manifold of constant curvature is called a real space form. Let M be an n-dimensional submanifold of \tilde{M}^{n+p} with the metric g. We denote by ∇ and $\tilde{\nabla}$ the covariant differentiations on M and \tilde{M} , respectively. Then, the second fundamental form σ of the immersion is defined by $\sigma(X,Y) = \tilde{\nabla}_X Y - \nabla_X Y$, where X and Y are the vector fields tangent to M. We call $\mu = (1/n)(\text{trace } \sigma)$ the mean curvature vector of M in \tilde{M} . The mean curvature H of M in \tilde{M} is the length of μ . If μ is identically zero, the submanifold is said to be minimal. The submanifold M is totally umbilic provided that $\sigma(X,Y) = g(X,Y)\mu$ for all vector fields X and Y on M. In particular, if σ vanishes identically, then M is said to be a totally geodesic submanifold of \tilde{M} . For a vector field ξ normal to M, we write $\tilde{\nabla}_x \xi = -A_{\xi}X + D_x \xi$, where $-A_{\xi}X$ (resp. $D_x \xi$) denotes the tangential (resp. the normal) component of $\tilde{\nabla}_x \xi$. We call D

Received October 21, 1989