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\S 0. Introduction.

Let $f:M\rightarrow\tilde{M}$ be an isometric immersion of a connected complete
Riemannian manifold $M$ into a Riemannian manifold $\tilde{M}$. We call $M$ $a$

circular geodesic submanifold of $\tilde{M}$ provided that for every geodesic $\gamma$

of $M$ the curve $ f\circ\gamma$ is a circle in $\tilde{M}$. The following problem is still
open: Classify circular geodesic submanifolds $M$ in a complex space form
(for details, see [7]).

The purpose of this paper is to consider this problem in the case of
dim $M=2$ .

\S 1. Preliminaries.

A Riemannian manifold of constant curvature is called a real space
form. Let $M$ be an n-dimensional submanifold of $\tilde{M}^{n+p}$ with the metric
$g$ . We denote by $\nabla$ and V the covariant differentiations on $M$ and $\tilde{M}$,
respectively. Then, the second fundamental form $\sigma$ of the immersion is
defined by $\sigma(X, Y)=\tilde{\nabla}_{X}Y-\nabla_{X}Y$, where $X$ and $Y$ are the vector fields
tangent to $M$. We call $\mu=(1/n)(trace\sigma)$ the mean curvature vector of
$M$ in $\tilde{M}$. The mean curvature $H$ of $M$ in $\tilde{M}$ is the length of $\mu$ . If $\mu$

is identically zero, the submanifold is said to be minimal. The sub.
manifold $M$ is totally umbilic provided that $\sigma(X, Y)=g(X, Y)\mu$ for all
vector fields $X$ and $Y$ on $M$. In particular, if $\sigma$ vanishes identically,
then $M$ is said to be a totally geodesic submanifold of $\tilde{M}$. For a vector
field $\xi$ normal to $M$, we write $\tilde{\nabla}_{X}\xi=-A_{\epsilon}X+D_{X}\xi$ , where $-A_{\epsilon}X$ (resp. $ D_{X}\xi$)
denotes the tangential (resp. the normal) component of $\tilde{\nabla}_{X}\xi$ We call $D$
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