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Introduction.

Valuation theory has an intimate relation with number theory and
algebraic geometry. The following Theorem $0$ , for instance, shows a role
of di8crete valuation rings.

Let $K$ be a field. We consider the following four conditions for a
set $W$ consisting of valuation rings with quotient field $K$:

(W-O) $ W\neq\emptyset$ .
(W-1) If $ReW$, then $R$ is a discrete valuation ring.

(W-2) For any $xeK$, the set $\{ReW|x\not\in R\}$ is finite.

(W-3) If $R_{1},$ $R_{2}eW,$ $ U^{(1)}R_{1}\cap m(R_{2})\cap\bigcap_{ReW}R=\emptyset$ , then $R_{1}=R_{2}$ ,

where $m(R)$ is the unique maximal ideal of a local ring $R$ , and $U^{(l)}R=$

$1+m(R)^{2}(i\geqq 1)$ . Then,

THEOREM $0$ . Let $K$ be a field. Then there exists an inclusion-
reversing bijection between the set of all Dedekind domains $A$ with
quotient field $K$, and the set of all $W$ satisfying the conditions (W-0),
(W-1), (W-2) and (W-3). The bijection is defined by

$\left\{\begin{array}{l}A\mapsto WW\prime\dot{\iota}s\\PA\\W\mapsto AA\\W\end{array}\right.$

For a proof, see [3], Theorem 1.3, Theorem 1.4, and p. 441.

In this paper, we shall generalize Theorem $0$ (see Theorems 9 and 13)
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