Токуо Ј. Матн. Vol. 13, No. 2, 1990

Prüfer Domain and Affine Scheme

Koji SEKIGUCHI

Sophia University

Introduction.

Valuation theory has an intimate relation with number theory and algebraic geometry. The following Theorem 0, for instance, shows a role of discrete valuation rings.

Let K be a field. We consider the following four conditions for a set W consisting of valuation rings with quotient field K:

(W-0) $W \neq \emptyset$.

(W-1) If $R \in W$, then R is a discrete valuation ring.

(W-2) For any $x \in K$, the set $\{R \in W \mid x \notin R\}$ is finite.

(W-3) If $R_1, R_2 \in W, U^{(1)}R_1 \cap m(R_2) \cap \bigcap_{R \in W} R = \emptyset$, then $R_1 = R_2$,

where m(R) is the unique maximal ideal of a local ring R, and $U^{(i)}R = 1 + m(R)^i$ $(i \ge 1)$. Then,

THEOREM 0. Let K be a field. Then there exists an inclusionreversing bijection between the set of all Dedekind domains A with quotient field K, and the set of all W satisfying the conditions (W-0), (W-1), (W-2) and (W-3). The bijection is defined by

 $\begin{cases} A \longmapsto W : W \text{ is the set of all P-adic valuation rings} \\ defined by the maximal ideals P of A, \\ W \longmapsto A : A \text{ is the intersection of all valuation rings} \\ belonging to W. \end{cases}$

For a proof, see [3], Theorem 1.3, Theorem 1.4, and p. 441.

In this paper, we shall generalize Theorem 0 (see Theorems 9 and 13) Received September 28, 1989 Revised April 11, 1990