Токуо Ј. Матн. Vol. 14, No. 1, 1991

On the Bernstein-Nikolsky Inequality

Ha Huy BANG* and Mitsuo MORIMOTO

Institute of Mathematics (Hanoi) and Sophia University

1. Introduction.

It is well-known that while trigonometric polynomials are good means of approximation of periodic functions, entire functions of exponential type may serve as a mean of approximation of nonperiodic functions, given on *n*-dimensional space. Some properties of entire functions of exponential type, bounded on the real space \mathbb{R}^n have been considered in [1]. These results are very important in the imbedding theory, the approximation theory and applications. The present paper is a continuation of this direction.

2. Results.

Let $1 \le p \le \infty$ and $\sigma = (\sigma_1, \dots, \sigma_n)$, $\sigma_j > 0$, $j = 1, \dots, n$. Denote by $M_{\sigma,p}$ the space of all entire functions of exponential type σ which as functions of a real $x \in \mathbb{R}^n$ belong to $L_p(\mathbb{R}^n)$. The well-known Bernstein-Nikolsky inequality reads as follows (see [1], p. 114): Let $f(x) \in M_{\sigma,p}$. Then

$$\sigma^{-\alpha} \| D^{\alpha} f \|_{p} \leq \| f \|_{p}, \qquad \alpha > 0.$$

$$\tag{1}$$

We have the following result:

THEOREM 1. Given $1 \le p < \infty$ and $f(x) \in M_{q,p}$. Then

$$\lim_{|\alpha| \to \infty} \sigma^{-\alpha} \|D^{\alpha} f\|_{p} = 0.$$
 (2)

To prove this theorem we need the following results:

LEMMA 1. Let
$$0 < r \le p \le q \le \infty$$
. Then $L_r(\mathbb{R}^n) \cap L_q(\mathbb{R}^n) \subset L_p(\mathbb{R}^n)$ and
 $\|f\|_p \le \|f\|_r^t \|f\|_q^{1-t}$

for any $f(x) \in L_r(\mathbb{R}^n) \cap L_q(\mathbb{R}^n)$, where t = (1/p - 1/q)/(1/r - 1/q).

Received October 25, 1990

* The first named author would like to thank Sophia University for her STEC research grant.