On the Existence and Uniqueness of the Stationary Solution to the Equations of Natural Convection

Hiroko MORIMOTO

Meiji University
(Communicated by S.T. Kuroda)

1. Notations and results.

In this paper, we discuss the existence of weak solutions of a system of equations which describes the motion of fluid with natural convection (Boussinesq approximation) in a bounded domain Ω in \mathbb{R}^n , $2 \le n$. We consider the following system of differential equations:

$$\begin{cases} (u \cdot \nabla)u = -\frac{1}{\rho} \nabla p + v\Delta u + \beta g\theta, \\ \operatorname{div} u = 0, & \text{in } \Omega \end{cases}$$

$$(1)$$

$$(u \cdot \nabla)\theta = \chi \Delta \theta,$$

where $u \cdot \nabla = \sum_j u_j \partial/\partial x_j$. Here u is the fluid velocity, p is the pressure, θ is the temperature, g is the gravitational vector function, and ρ (density), ν (kinematic viscosity), β (coefficient of volume expansion), χ (thermal diffusivity) are positive constants. We study this system of equations with mixed boundary condition for θ . Let $\partial \Omega$ (the boundary of Ω) be divided into two parts Γ_1 , Γ_2 such that

$$\partial \Omega \!=\! \Gamma_1 \cup \Gamma_2 \;, \qquad \Gamma_1 \cap \Gamma_2 \!=\! \varnothing \;.$$

The boundary conditions are as follows.

$$\begin{cases} u=0, & \theta=\xi, & \text{on } \Gamma_1, \\ u=0, & \frac{\partial \theta}{\partial n}=\eta, & \text{on } \Gamma_2, \end{cases}$$
 (2)

where ξ (resp. η) is a given function on Γ_1 (resp. Γ_2), n is the outward normal vector to $\partial \Omega$. In this paper, we show the existence of weak solution of this problem for bounded domain Ω in \mathbb{R}^n , $2 \le n$, using the Galerkin method (Theorem 1). Some uniqueness result