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1. Notations and results.

In this paper, we discuss the existence of weak solutions of a system of equations
which describes the motion offluid with natural convection (Boussinesq approximation)
in a bounded domain $\Omega$ in $R^{n},$ $2\leq n$ . We consider the following system of differential
equations:

$\left\{\begin{array}{ll}(u\cdot\nabla)u=-\frac{1}{\rho}\nabla p+v\Delta u+\beta g\theta, & \\divu=0, & in \Omega (1)\\(u\cdot\nabla)\theta=\chi\Delta\theta, & \end{array}\right.$

where $u\cdot\nabla=\sum_{j}u_{j}\partial/\partial x_{j}$ . Here $u$ is the fluid velocity, $p$ is the pressure, $\theta$ is the temperature,
$g$ is the gravitational vector function, and $\rho$ (density), $v$ (kinematic viscosity), $\beta$ (coefficient
ofvolume expansion), $\chi$ (thermal diffusivity) are positive constants. We study this system
of equations with mixed boundary condition for $\theta$ . Let $\partial\Omega$ (the boundary of $\Omega$) be
divided into two parts $\Gamma_{1},$ $\Gamma_{2}$ such that

$\partial\Omega=\Gamma_{1}\cup\Gamma_{2}$ , $\Gamma_{1}\cap\Gamma_{2}=\emptyset$ .
The boundary conditions are as follows.

$\left\{\begin{array}{l}u=0\theta=\xi\Gamma_{1}\\\\u=0\frac{\partial\theta}{\partial n}=\eta\Gamma_{2}\end{array}\right.$

where $\xi$ (resp. $\eta$) is a given function on $\Gamma_{1}$ (resp. $\Gamma_{2}$), $n$ is the outward normal vector to $\partial\Omega$ .
In this paper, we show the existence of weak solution of this problem for bounded

domain $\Omega$ in $R^{n},$ $2\leq n$ , using the Galerkin method (Theorem 1). Some uniqueness result
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