Replacements in the Conway Third Identity ## Yasutaka NAKANISHI Kobe University (Communicated by S. Suzuki) Dedicated to Professor Shôrô Araki on his sixtieth birthday In this note we study knots and links in the 3-sphere S^3 . J. H. Conway introduced the potential function for a link with labels and stated three Identities in [1]. It is well-known that each replacement appearing in the Conway First Identity is a kind of unknotting operation. In the Conway Second Identity, two replacements are an (ordinary) unknotting operation and the other one is unknown even if we ignore labels (cf. [3], [4]). Here, we will consider replacements appearing in the Conway Third Identity. Let L_1 , L_2 , L_3 , and L_4 be four links which differ only in one place as shown in Fig. 1. FIGURE 1. A Δ_{ij} -move is defined to be a local move on a link diagram between L_i and L_j . If a diagram of a link L' is a result of a Δ_{ij} -move on a diagram of a link L, then we say that L is deformed into L' by a Δ_{ij} -move. Δ_{14} - and Δ_{23} - moves are Δ -unknotting operations defined by H. Murakami and the author in [2]. Our purpose in this note is to show that each Δ_{ij} -move $(i \neq j)$ is a kind of unknotting operation and which kind of equivalence relation for links is generated by each Δ_{ij} -move. ## 1. Definitions and theorems. It is clear that Δ_{ij} -moves never change the number of components of links. And