Replacements in the Conway Third Identity

Yasutaka NAKANISHI

Kobe University
(Communicated by S. Suzuki)

Dedicated to Professor Shôrô Araki on his sixtieth birthday

In this note we study knots and links in the 3-sphere S^3 . J. H. Conway introduced the potential function for a link with labels and stated three Identities in [1]. It is well-known that each replacement appearing in the Conway First Identity is a kind of unknotting operation. In the Conway Second Identity, two replacements are an (ordinary) unknotting operation and the other one is unknown even if we ignore labels (cf. [3], [4]). Here, we will consider replacements appearing in the Conway Third Identity. Let L_1 , L_2 , L_3 , and L_4 be four links which differ only in one place as shown in Fig. 1.

FIGURE 1.

A Δ_{ij} -move is defined to be a local move on a link diagram between L_i and L_j . If a diagram of a link L' is a result of a Δ_{ij} -move on a diagram of a link L, then we say that L is deformed into L' by a Δ_{ij} -move. Δ_{14} - and Δ_{23} - moves are Δ -unknotting operations defined by H. Murakami and the author in [2]. Our purpose in this note is to show that each Δ_{ij} -move $(i \neq j)$ is a kind of unknotting operation and which kind of equivalence relation for links is generated by each Δ_{ij} -move.

1. Definitions and theorems.

It is clear that Δ_{ij} -moves never change the number of components of links. And