Токуо Ј. Матн. Vol. 14, No. 1, 1991

A Proof of Thurston's Uniformization Theorem of Geometric Orbifolds

Yukio MATSUMOTO and José María MONTESINOS-AMILIBIA

University of Tokyo and Universidad Complutense de Madrid (Communicated by N. Iwahori)

Dedicated to Professor Tatsuo Homma in his fifth Jupiterian year

§1. The uniformization theorem.

A smooth *m*-dimensional orbifold (briefly, an *m*-orbifold) is a σ -compact Hausdorff space M which is locally modelled on a quotient space of a finite group action on a smooth *m*-dimensional manifold ([Sa], [Th]). More precisely, an *m*-orbifold M is covered by an atlas of folding charts $\{(\tilde{U}_i, G_i, f_i, U_i)\}_{i \in I}$, each chart consisting of a smooth connected *m*-manifold \tilde{U}_i , a finite group G_i acting on \tilde{U}_i smoothly and effectively, an open set U_i of M and a folding map $f_i: \tilde{U}_i \rightarrow U_i$ which induces a natural homeomorphism $G_i \setminus \tilde{U}_i \rightarrow U_i$. These charts must satisfy a certain compatibility condition. In a simplified version due to Bonahon and Siebenmann [BS], the condition states the following: for every $x \in \tilde{U}_i$ and $y \in \tilde{U}_j$ such that $f_i(x) = f_j(y) \in U_i \cap U_j$, there exists a diffeomorphism $\psi: \tilde{V}_x \rightarrow \tilde{V}_y$ from an open neighborhood of x in \tilde{U}_i to an open neighborhood of y in \tilde{U}_j such that $\psi(x) = y$ and $f_j \psi = f_i$. (For an explanation of this compatibility condition, see Appendix A.)

Two atlases on an m-orbifold give the same orbifold structure iff their union is again a compatible atlas.

For instance, let Γ be a group acting on a manifold \tilde{U} smoothly, effectively and properly discontinuously. Then the quotient space $\Gamma \setminus \tilde{U}$ has the structure of a smooth orbifold. This type of an orbifold is said to be *good*.

The notion of being good is defined more formally in terms of orbifold coverings as follows. Let $h: N \to M$ be a continuous map of a connected orbifold N onto another orbifold M. h is called an *orbifold covering* of M if M admits an atlas of folding charts $\{(\tilde{U}_i, G_i, f_i, U_i)\}_{i \in I}$ such that, for each component V of $h^{-1}(U_i)$, there exists a folding chart $k: \tilde{U}_i \to V$ in the maximal atlas of N so that $f_i = hk$.

DEFINITION ([Th]). A connected orbifold M is good if there exists an orbifold

Received June 6, 1990