Curvature Functions for the Sphere in Pseudohermitian Geometry

Jih-Hsin CHENG*
Academia Sinica, R.O.C.
(Communicated by T. Nagano)

Dedicated to Professor Tadashi Nagano on his sixtieth birthday

1. Introduction.

In Jerison and Lee's work on the CR Yamabe problem [JL], they consider the following equation of prescribing pseudohermitian scalar curvature $(2(n+1) / n) R$ under the choice of contact forms in a fixed CR structure:

$$
\begin{equation*}
\Delta_{b} u+\frac{n}{2(n+1)} R_{0} u-R u^{(n+2) / n}=0, \quad u>0 \tag{1.1}
\end{equation*}
$$

with $R \equiv$ constant, R_{0} is a given pseudohermitian scalar curvature, where the sublaplacian operator Δ_{b} is the real part of Kohn's \square_{b} acting on functions. (See $\S 2$ for the definition.)

Let $S^{2 n+1}$ be the unit sphere in C^{n+1} equipped with the canonical pseudohermitian structure having pseudohermitian scalar curvature $n(n+1) / 2$ (see $\S 2$). In this paper, we study the problem of prescribing arbitrary R on $S^{2 n+1}$ with $R_{0}=n(n+1) / 2$ in (1.1). In fact, the equation we consider reads

$$
\begin{equation*}
\Delta_{b} u+\frac{n^{2}}{4} u-R u^{a}=0, \quad u>0 \tag{1.2}
\end{equation*}
$$

on $S^{2 n+1}$, where $a>1$ is a constant. Our canonical pseudohermitian structure is determined by a certain contact form θ. Let L_{θ} denote the associated Levi form. The volume form $\theta \wedge(d \theta)^{n}$ is denoted by $d v_{\theta}$. The gradient operator relative to the metric $\langle\rangle=,(1 / 4) \theta^{2}+L_{\theta}$ is denoted by ∇. In $\S 3$, we obtain an integrability condition as follows.

Theorem A. If u is a positive solution of (1.2), then

[^0]
[^0]: Received June 6, 1990

 * Research supported in part by National Science Council grant NSC 79-0208-M001-18 of the Republic of China.

