Tokyo J. Math. Vol. 14, No. 1, 1991

Spectral Flow and Maslov Index Arising from Lagrangian Intersections

Nobukazu OTSUKI and Kenro FURUTANI

Science University of Tokyo (Communicated by Y. Shimizu)

Dedicated to Professor Nobuhiko Tatsuuma on his 60-th birthday

§1. Introduction.

Let P be a 2n-dimensional symplectic manifold with the symplectic structure ω , and L, L' be two Lagrangian submanifolds of P. We assume, in this paper, that L and L' intersect transversally with a non-empty intersection, and a smooth map

$$f: I \times I \to P, \qquad I = [0, 1]$$

is given with the following properties:

$$f(\tau, 0) \in L, \quad f(\tau, 1) \in L' \quad \text{for any} \quad \tau \in I,$$

$$f(0, t) \equiv x, \quad f(1, t) \equiv y \quad \text{for any} \quad t \in I,$$

(1-1)

where $x, y \in L \cap L'$. Under these assumptions, two homotopic invariants arise. One is the spectral flow associated to a family of certain operators, and the other is the Maslov index of a curve which relates with the boundary conditions imposed on the operators in that family.

A. Floer has shown that these two are equal to relative Morse index from x to y, which is defined as the Fredholm index of a certain elliptic operator (see [F]).

Now let us explain the problem more precisely. Let g be a Riemannian metric on P which is adapted to the symplectic structure ω , that is, if we write $\omega(X, Y) = g(X, JY)$, for any vector fields X, Y on P, then J is an almost complex structure of P. Hence $J^2 = -\text{Id}$ and ${}^tJ = -J$ (tJ is the transpose of J with respect to the metric g). We fix such a metric henceforth, and denote by ∇ the Riemannian connection of the metric g. Let Ω be a path space of P consisting of smooth paths $z: I \rightarrow P$ such that $z(0) \in L$ and $z(1) \in L'$. Consider, at least locally, a symplectic action functional $a: \Omega \rightarrow R$ defined by

Received June 1, 1990