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\S 1. Introduction.

Let $P$ be a $2n$-dimensional symplectic manifold with the symplectic structure $\omega$ ,
and $L,$ $L^{\prime}$ be two Lagrangian submanifolds of $P$ . We assume, in this paper, that $L$ and

$L^{\prime}$ intersect transversally with a non-empty intersection, and a smooth map

$f$ : $I\times I\rightarrow P$ , $I=[0,1]$

is given with the following properties:

$f(\tau, O)\in L$ , $f(\tau, 1)\in L^{\prime}$ for any $\tau\in I$ ,
(1-1)

$f(O, t)\equiv x$ , $f(1, t)\equiv y$ for any $t\in I$ ,

where $x,$ $y\in L\cap L^{\prime}$ . Under these assumptions, two homotopic invariants arise. One is
the spectral flow associated to a family of certain operators, and the other is the Maslov
index of a curve which relates with the boundary conditions imposed on the operators
in that family.

A. Floer has shown that these two are equal to relative Morse index from $x$ to $y$,
which is defined as the Fredholm index of a certain elliptic operator (see [F]).

Now let us explain the problem more precisely. Let $g$ be a Riemannian metric on
$P$ which is adapted to the symplectic structure $\omega$ , that is, if we write $\omega(X, Y)=g(X, JY)$ ,
for any vector fields $X,$ $Y$ on $P$, then $J$ is an almost complex structure of $P$ . Hence
$J^{2}=-Id$ and ${}^{t}J=-J$ ( ${}^{t}J$ is the transpose of $J$ with respect to the metric $g$). We fix such
a metric henceforth, and denote by $\nabla$ the Riemannian connection of the metric $g$ . Let
$\Omega$ be a path space of $P$ consisting of smooth paths $z:I\rightarrow P$ such that $z(O)\in L$ and
$z(1)\in L^{\prime}$ . Consider, at least locally, a symplectic action functional $a:\Omega\rightarrow R$ defined by
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