Positive Projections on C^* -Algebras

Hiroyuki OSAKA

Tokyo Metropolitan University (Communicated by J. Tomiyama)

§1. Introduction.

In recent years there has been considerable progress in the study of certain linear maps of C^* -algebras which preserve the natural partial ordering. Suppose A is a unital C^* -algebra and P a unital positive projection of A into itself. It is known [6, 22] that P(A) is a C^* -algebra under the product $a \circ b = P(ab)$ if P is completely positive, and P is automatically completely positive if P(A) is a C^* -algebra. E. Størmer [18] linked the decomposability of P, which is weaker than complete positivity, to the theory of C-algebras. In [15], C-A. G. Robertson has showed that the decomposability of C-algebras in the existence of decomposition of C-A as a sum of a 2-positive map and a 2-copositive map under some condition. The global structure of positive linear maps is, however, very complicated, even in the finite dimensional case [3, 4, 9, 18, 21].

In this paper we shall investigate the difference between complete positivity and positivity of contractive projections on C^* -algebras, particularly in case of matrix algebras. As an application, we shall describe general C^* -algebras for which n-positivity coincides with (n+1)-positivity in the class of projections.

Let A and B be C^* -algebras. We do not assume units for C^* -algebras. The $n \times n$ matrix space over A, that is, $M_n(A)$ naturally inherits the corresponding order as a C^* -algebra. A C^* -algebra is said to be n-subhomogeneous if every irreducible representation of the algebra is finite dimensional with dimension not greater than n. Let ϕ be a positive linear map of A into B. Recall that ϕ is said to be n-positive (respectively, n-copositive) if the n-multiplicity map $\phi(n)$ (respectively, the n-comultiplicity map $\phi(n)$),

$$\phi(n): [a_{i,j}] \in M_n(A) \longrightarrow [\phi(a_{i,j})] \in M_n(B)$$
(respectively, $\phi^c(n): [a_{i,j}] \in M_n(A) \longrightarrow [\phi(a_{j,i})] \in M_n(B)$)

is positive. The map ϕ is completely positive if it is *n*-positive for every positive integer n. It is, however, known that every n-positive map on an n-subhomogeneous C^* -