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Introduction.

Let $\ovalbox{\tt\small REJECT}$ be the upper half-plane $\{\tau\in C|{\rm Im}\tau>0\}$ and $\tau\in\ovalbox{\tt\small REJECT}$ . Let $\wp(u, \tau)$ denote the
Weierstrass $\wp$ -function with fundamental periods $(\tau, 1)$, (in more usual notation, it

should be written $\wp(u;\tau, 1)$ or $\wp(u,$ $\left(\begin{array}{l}\tau\\ 1\end{array}\right))$). As is well known, $\wp(u, \tau)$ is a holomorphic

function of two complex variables $u,$ $\tau$ in a suitable regionc $C\times\ovalbox{\tt\small REJECT}$ , and the theorem
ofimplicit function shows that, given a suitable region $D\subset\ovalbox{\tt\small REJECT}$ , there exists a holomorphic
function $u_{D}(\tau)$ of $\tau\in D$ such that $\wp(u_{D}(\tau), \tau)=0$ on $D$ . This $u_{D}(\tau)$ is not uniquely determined
by $D$ . We shall show in this paper that there exists a unique analytic function $u$ in $\ovalbox{\tt\small REJECT}$ ,
called “

$\wp$-zero value function”, such that every $u_{D}(\tau)$ are its branch on $D$ (Theorem 1).
This function $u$ is a “many-valued modular form” in a sense to be indicated below. We
shall show also in this paper the existence of another function $\mathfrak{p}_{N}$ of the same kind for
an integer $N$ greater than 1, which will be called $ N^{th}\wp$ -zero division value function”
(Theorem 2), and which is expected to have interesting arithmetical applications.
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NOTATIONS AND TERMINOLOGIES. In this paper, the symbol $‘‘:=$ means that the
expression on the right is the definition of that on the left. We put

$\Gamma:=SL_{2}(Z)$ , $U:=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ , $T:=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $I;=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .

Furthermore, for $z\in C,$ $ S=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma$ , we set

$Sz:=\frac{az+b}{cz+d}$ , $S:z;=cz+d$ .
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