Tokyo J. Math. Vol. 14, No. 1, 1991

Energy Inequalities for a Mixed Problem for the Wave Equation in a Domain with a Corner

Fukuzo SUZUKI

Gunma College of Technology (Communicated by T. Kori)

Introduction.

Several studies have already been conducted on the mixed problems for hyperbolic equations in domains with corners. K. Asano [1] considered the mixed problem for the wave equation

$$\begin{cases} L[u] = \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = f(t, x, y) \\ u(0, x, y) = u_0(x, y), \qquad \frac{\partial u}{\partial t}(0, x, y) = u_1(x, y) \\ B_1[u] \Big|_{x=0} = \left(\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} - c\frac{\partial u}{\partial t}\right)\Big|_{x=0} = 0 \\ B_2[u] \Big|_{y=0} = \frac{\partial u}{\partial y}\Big|_{y=0} = 0 \\ (t, x, y) \in (0, T) \times (\mathbb{R}^{\frac{1}{2}})^2 \end{cases}$$

where b and c are real constants.

Assuming the following condition for (0.1),

(0.2) $\begin{cases} |b| \leq c, & |b| \leq 1\\ (b, c) \neq (-1, 1), (1, 1), \end{cases}$

he showed the next result.

THEOREM A (K. Asano). Let $u \in H_2((0, T) \times (\mathbb{R}^1_+)^2)$ be the solution of the problem (0.1). Then, there exists a positive constant K independent of u such that the following energy inequality holds: for any $t \ (0 < t < T)$

(0.1)

Received March 8, 1990