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Introduction.

Let us denote the continued fraction expansion of an irrational number $\alpha(0<\alpha<])$

by

$\alpha=[0:e_{1}, e_{2}, \cdots]$ ,

and its n-th convergent by $p_{n}/q_{n}$ . We call the sequence of partial quotients
$\{e_{i} ; i=1,2, \cdots\}$ the name of $\alpha$ associated with the simple continued fraction algorithm.
The following theorems are well known.

THEOREM A. (1) (Galois) $\alpha$ is a reduced quadratic irrational, that is, a quadratic
irrational whose algebraic conjugate ct satisfies $\overline{\alpha}<-1$ , iff the name of $\alpha$ is purely
periodic.

(2) (Lagrange) $\alpha$ is a quadratic irrational iff the name of $\alpha$ is eventually periodic.
(3) (Klein) Let $\Gamma_{t^{\pm})}$ be a polygon jointing the lattice points $(q_{2n-1}, p_{2n-1})$ ,

$n=1,2,$ $\cdots$ $((q_{2n},p_{2n}),$ $n=0,1,$ $\cdots$ for $\Gamma_{-}$ ) in this order, then the polygons are
approximating polygons of the line $L$ ; crx-y $=0$ , that is, $\Gamma_{()}\pm$ satisfies the following
properties:

(i) $\Gamma_{\langle)}\pm$ is a convex (concave) polygon, and
(ii) The domain $D$ enclosed by $\Gamma_{+}and$ $\Gamma_{-}in$ thefirst quadrant includes the half line

$\alpha x-y=0,$ $x\geqq 0$ , and the domain $D$ does not contain any lattice point.
(4) (L\’evy) For almost all $\alpha$ , we have

1) $\lim_{n\rightarrow\infty}\frac{1}{n}$ log $q_{n}=\frac{\pi^{2}}{12\log 2}$ and

2) $\lim_{n\rightarrow\infty}(-\frac{1}{n})$ log $|q_{n}\alpha-p_{n}|=\frac{\pi^{2}}{12\log 2}$ .

The purpose of this paper is to give an extension of above theorems to in-
homogeneous linear forms $\alpha x+\beta-y$ . Morimoto ([4]) presented a generalized algo-
rithm of the simple continued fraction expansion, which induces vertex points $(q_{n},p_{n})$
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