Токуо Ј. Матн. Vol. 14, No. 2, 1991

On Morimoto Algorithm in Diophantine Approximation

Shunji ITO and Kenkiti KASAHARA

Tsuda College

Introduction.

Let us denote the continued fraction expansion of an irrational number α (0 < α < 1) by

$$\alpha = [0: e_1, e_2, \cdots],$$

and its *n*-th convergent by p_n/q_n . We call the sequence of partial quotients $\{e_i : i=1, 2, \dots\}$ the name of α associated with the simple continued fraction algorithm. The following theorems are well known.

THEOREM A. (1) (Galois) α is a reduced quadratic irrational, that is, a quadratic irrational whose algebraic conjugate $\bar{\alpha}$ satisfies $\bar{\alpha} < -1$, iff the name of α is purely periodic.

(2) (Lagrange) α is a quadratic irrational iff the name of α is eventually periodic.

(3) (Klein) Let $\Gamma_{(\pm)}$ be a polygon jointing the lattice points (q_{2n-1}, p_{2n-1}) , $n=1, 2, \cdots$ $((q_{2n}, p_{2n}), n=0, 1, \cdots$ for $\Gamma_{-})$ in this order, then the polygons are approximating polygons of the line $L: \alpha x - y = 0$, that is, $\Gamma_{(\pm)}$ satisfies the following properties:

(i) $\Gamma_{(\pm)}$ is a convex (concave) polygon, and

(ii) The domain D enclosed by Γ_+ and Γ_- in the first quadrant includes the half line $\alpha x - y = 0$, $x \ge 0$, and the domain D does not contain any lattice point.

(4) (Lévy) For almost all α , we have

1)
$$\lim_{n \to \infty} \frac{1}{n} \log q_n = \frac{\pi^2}{12 \log 2}$$
 and
2) $\lim_{n \to \infty} \left(-\frac{1}{n} \right) \log |q_n \alpha - p_n| = \frac{\pi^2}{12 \log 2}.$

The purpose of this paper is to give an extension of above theorems to inhomogeneous linear forms $\alpha x + \beta - y$. Morimoto ([4]) presented a generalized algorithm of the simple continued fraction expansion, which induces vertex points (q_n, p_n)

Received December 3, 1990