Токуо Ј. Матн. Vol. 15, No. 2, 1992

Symplectic Manifolds with Semi-Free Hamiltonian S^1 -Action

Akio HATTORI

Meiji University (Communicated by T. Nagano)

1. Introduction

In a previous paper [H1] we have shown that a connected closed symplectic S^1 -manifold with the properties (i), (ii) and (iii) listed below must be simply connected and have the same homology groups as $S^2 \times \cdots \times S^2$.

(i) The action admits a moment map.

(ii) The fixed points are all isolated.

(iii) The action is semi-free.

In this paper we shall prove the following

THEOREM 1.1. Let M be a connected closed symplectic S^1 -manifold satisfying the conditions (i), (ii) and (iii) listed above. Then M has the same cohomology ring and the same Chern classes as $S^2 \times \cdots \times S^2$.

Semi-free actions are the simplest and, in a sense, the basic type among S^1 -actions. For example, if M is any S^1 -manifold and if Z/m is a maximal finite isotropy subgroup then each component of the fixed point set of the restricted Z/m-action is an invariant symplectic S^1 -submanifold on which the S^1 -action, made effective, is free or semi-free. Thus our result above may be considered as the first step to investigate general symplectic S^1 -manifolds admitting moment map.

The main idea of proof can be stated as follows. The critical points of the moment map are precisely the fixed points of the action. Let $\Sigma_1, \dots, \Sigma_n$ be a suitably chosen homology basis of $H_2(M)$ corresponding to the fixed points of index 2 and let x_1, \dots, x_n be the dual basis of $H^2(M)$. Let $\xi = \xi(h_1, \dots, h_n)$ be the complex line bundle over M with $c_1(\xi) = x = h_1 x_1 + \dots + h_n x_n$ where $h_i \in \mathbb{Z}$. The S¹-action on M can be lifted to an action on ξ and defines a weight $a_i = a_i(h_1, \dots, h_n)$ at each fixed point P_i . These weights a_i satisfy certain relations coming from a fixed point formula. Also they are related to $x^n[M]$. Using these two facts and the linearity of x and a_i with respect to h_1, \dots, h_n we determine all the values $x_{i_1} x_{i_2} \cdots x_{i_n}[M]$ which, in turn,

Received June 25, 1991