Токуо Ј. Матн. Vol. 16, No. 2, 1993

Positive Characteristic Finite Generation of Symbolic Rees Algebras and Roberts' Counterexamples to the Fourteenth Problem of Hilbert

Kazuhiko KURANO

Tokyo Metropolitan University

1. Introduction.

In this paper we shall study the problem whether the symbolic Rees algebras occurring in Roberts' new counterexamples [10] to the 14th problem of Hilbert are Noetherian rings or not, in the case where the characteristic of the ground field is positive.

For each prime ideal Q in a commutative Noetherian ring R we put $R_s(Q) = \sum_{n\geq 0} Q^{(n)}\xi^n$ and call it the symbolic Rees algebra of Q, where $Q^{(n)}$ denotes the n^{th} symbolic power of Q and ξ is an indeterminate over R. The determination of finite generation in $R_s(Q)$ is one of the central problems in both commutative algebra and algebraic geometry (cf. [8], [7], [9], [10], [3], and [4]). It is generally a quite hard problem but, according to the recent research [4], in the positive characteristic case there might be more chances for $R_s(Q)$ to be a Noetherian ring than in the case where the characteristic is zero.

Originally this kind of question was raised in 1985 by Cowsik [3], asking if $R_s(Q)$ are always Noetherian especially when the base ring R is regular (and local). However, as is now well known, this is not true in general. Three counterexamples [9], [10], and [4] are already known. In this paper we are particularly interested in the second example [10] due to Roberts, so we would like to cite here his examples explicitly.

Let F be a field and $R_0 = F[x, y, z]$ be a polynomial ring with three indeterminates over F. $R = R_0[S, T, U, V]$ and $R_0[W]$ denote polynomial rings over R_0 . For each positive integer t let $\varphi : R \to R_0[W]$ be the homomorphism of R_0 -algebras defined by $\varphi(S) = x^{t+1}W, \varphi(T) = y^{t+1}W, \varphi(U) = z^{t+1}W$ and $\varphi(V) = (xyz)^tW$. We put $Q = \text{Ker}(\varphi)$. Let $R_1 = R_0 \cdot S + R_0 \cdot T + R_0 \cdot U + R_0 \cdot V$ be a free R_0 -module and let $\varphi : R_1 \to R_0$ be an R_0 linear map such that $\varphi(S) = x^{t+1}, \varphi(T) = y^{t+1}, \varphi(U) = z^{t+1}$ and $\varphi(V) = (xyz)^t$. We denote by M the kernel of φ and put $S(M) = R_0[M]$ ($\subseteq R$). Let $\overline{S(M)}$ be the ideal-transform of

Received September 14, 1992

Revised February 26, 1993

Partially supported by Grant-in-Aid for Co-operation Research