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1. lntroduction.

In this paper we shall study the problem whether the symbolic Rees algebras
occurring in Roberts’ new counterexamples [10] to the $14^{th}$ problem of Hilbert are
Noetherian rings or not, in the case where the characteristic ofthe ground field is positive.

For each prime ideal $Q$ in a commutative Noetherian ring $R$ we put $R_{s}(Q)=$

$\sum_{n\geq 0}Q^{\langle n)}\xi^{n}$ and call it the symbolic Rees algebra of $Q$ , where $Q^{\langle n)}$ denotes the $n^{th}$

symbolic power of $Q$ and $\xi$ is an indeterminate over $R$ . The determination of finite
generation in $R_{s}(Q)$ is one of the central problems in both commutative algebra and
algebraic geometry (cf. [8], [7], [9], [10], [3], and [4]). It is generally a quite hard
problem but, according to the recent research [4], in the positive characteristic case
there might be more chances for $R_{s}(Q)$ to be a Noetherian ring than in the case where
the characteristic is zero.

Originally this kind of question was raised in 1985 by Cowsik [3], asking if $R_{s}(Q)$

are always Noetherian especially when the base ring $R$ is regular (and local). However,
as is now well known, this is not true in general. Three counterexamples [9], [10], and
[4] are already known. In this paper we are particularly interested in the second example
[10] due to Roberts, so we would like to cite here his examples explicitly.

Let $F$ be a field and $R_{0}=F[x, y, z]$ be a polynomial ring with three indeterminates
over F. $R=R_{0}[S, T, U, V]$ and $R_{0}[W]$ denote polynomial rings over $R_{0}$ . For each
positive integer $t$ let $\varphi$ : $R\rightarrow R_{0}[W]$ be the homomorphism of $R_{0}$-algebras defined by
$\varphi(S)=x^{t+1}W,$ $\varphi(T)=y^{t+1}W,$ $\varphi(U)=z^{t+1}W$ and $\varphi(V)=(xyz)^{t}W$. We put $Q=Ker(\varphi)$ . Let
$R_{1}=R_{0}\cdot S+R_{0}\cdot T+R_{0}\cdot U+R_{0}\cdot V$ be a free $R_{0}$-module and let $\phi:R_{1}\rightarrow R_{0}$ be an $R_{0^{-}}$

linear map such that $\phi(S)=x^{t+1},$ $\phi(T)=y^{t+1},$ $\phi(U)=z^{t+1}$ and $\phi(V)=(xyz)^{t}$ . We denote
by $M$ the kernel of $\phi$ and put $S(M)=R_{0}[M](\subseteq R)$ . Let $\overline{S(M)}$ be the ideal-transform of
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