Токуо Ј. Матн. Vol. 17, No. 1, 1994

The Theta-Curve Cobordism Group Is Not Abelian

Katura MIYAZAKI

Tokyo Denki University (Communicated by S. Suzuki)

Introduction.

A spatial theta-curve $f: \theta \to S^3$ is an embedding of a theta-curve with its vertices and edges labelled. Given two spatial theta-curves f and g, we can define a new spatial theta-curve $f \ddagger g$, the vertex connected sum of f and g, up to ambient isotopy [7]. K. Taniyama [6] defines cobordism between spatial theta-curves, and observes that (1) the cobordism classes form a group Θ under vertex connected sum: the cobordism inverse of a theta-curve f is represented by the reflected inverse f! of f; (2) a theta-curve is slice if and only if an associated 2-component parallel link is slice (i.e. bounds disjoint disks in the 4-ball). He investigates the theta-curve cobordism group Θ through constituent knots of theta-curves, but the following fundamental question is left open in [6].

QUESTION 1. Is Θ an abelian group?

This note presents an example answering the question in the negative. The proof consists of showing that certain 2-component links are not slice using the refinement of the Casson-Gordon technique due to P. Gilmer [2].

Finally we raise intriguing questions below.

QUESTION 2. (1) Does Θ contain the free group of infinite rank? (2) What is the center of Θ ?

1. Statement of results.

We use the same notation as in [6], e.g. *i*-th parallel link $l_i(f)$, reflected inverse f! of a spatial theta-curve f, theta-curve cobordism group Θ . Given a knot K and $q \in \mathbf{R}$, $\sigma_{(q)}(K)$ is the signature of the matrix $(1-e^{2\pi i q})V+(1-e^{-2\pi i q})V^T$ where V is a Seifert matrix for K.

Received November 6, 1992