Токуо Ј. Матн. Vol. 17, No. 1, 1994

On the Convergence of the Spectrum of Perron-Frobenius Operators

Makoto MORI

National Defense Academy (Communicated by Y. Ito)

1. Introduction.

We will consider $\{F_t\}_{t=1,2,\dots,\infty}$ a family of piecewise C^2 mappings from an interval I into itself. We denote by P_t the Perron-Frobenius operator corresponding to F_t :

$$\int_{I} P_{t}f(x)g(x)dx = \int_{I} f(x)g(F_{t}(x))dx \quad \text{for } f \in L^{1} \text{ and } g \in L^{\infty},$$

where we denote by L^1 (resp. L^{∞}) the set of integrable functions (resp. the set of bounded measurable functions). We denote by $Spec(F_t)$ the spectrum of P_t restricted to BV, the set of bounded functions. Here, as usual, we consider BV as a subset of L^1 by taking L^1 -version and the norm

$$V(f) = \inf\{\text{the total variation of } \tilde{f}: \tilde{f} \text{ is a } L^1 \text{-version of } f\} + \int_I |f(x)| dx$$

We assume that F_t converges to F_{∞} in piecewise C^1 (the definition will be stated in §2). In this situation, though P_t converges to P_{∞} in L^1 , P_t does not necessarily converge to P_{∞} in BV. This means that general perturbation theories cannot be applied. Nevertheless, using Fredholm matrix which is defined in [10], our main theorem (Theorem A) states that $Spec(F_{\infty})$ can be approximated by $Spec(F_t)$.

THEOREM A. Assume that

(1) each F_t is a piecewise C^2 mapping with positive lower Lyapunov number ξ_t $(t=1, 2, \dots, \infty)$,

(2) F_t converges to F_{∞} in piecewise C^1 .

Then for z_{∞} which satisfies $|z_{\infty}| < e^{\xi_{\infty}}, z_{\infty}^{-1} \in Spec(F_{\infty})$ if and only if there exists a sequence $\{z_t\}$ such that z_t converges to z_{∞} and $z_t^{-1} \in Spec(F_t)$.

Received January 13, 1992

Revised September 18, 1993