Токуо Ј. Матн. Vol. 18, No. 1, 1995

Differential Forms on Ringed Spaces of Valuation Rings

Koji SEKIGUCHI

Sophia University

In memory of Professor Yukiyosi Kawada

Introduction.

Given a field K and a subring A of K, we consider the set of valuation rings of K which contain A. This set has a structure of a local ringed space, denoted by Zar(K|A) (see [6] or [7]).

In this paper, we shall show that normal integral schemes (X, \mathcal{O}_X) proper over Spec A with rational function field K are quotient spaces of $\operatorname{Zar}(K|A)$ and $\mathcal{O}_X = \Phi_{X*}\mathcal{O}_Z$. Here \mathcal{O}_Z is the structure sheaf of $Z = \operatorname{Zar}(K|A)$ and $\Phi_X : Z \to X$ is the quotient mapping. In order to show this, we introduce a category $\mathscr{C}_0(K|A)$ of local ringed spaces, which contains both $\operatorname{Zar}(K|A)$ and all integral schemes proper over Spec A with rational function field K (see Theorems 1 and 1').

For objects X of $\mathscr{C}_0(K|A)$, we introduce sheaves Ω_X^m of differential forms as in the case of schemes over Spec A. In particular if A is a perfect field and X is a regular scheme, then Ω_X^m coincides with the ordinary sheaf of regular differential forms and $\Omega_X^m = \Phi_{X*}\Omega_Z^m$ for any multi-index m (see Theorem 2). From this, the birational invariance of regular differential forms of regular varieties follows immediately.

To define structure sheaves on quotient spaces of Zar(K|A) and sheaves Ω_X^m on objects X of $\mathscr{C}_0(K|A)$ in a unified way, we shall introduce the notion of intersection sheaf in §0.

The author would like to express his thanks to Professor Shigeru Iitaka for his advices and warm encouragement.

§0. Let \mathscr{A} be the category of A-modules or the category of A-rings, where A is a commutative ring with unity. For an object N of \mathscr{A} , we denote by $\operatorname{Sub}_{\mathscr{A}}(N)$ the totality of subobjects of N. For a subset E of N, we put

 $\operatorname{Sub}_{\mathscr{A}}(N|E) = \{ M \in \operatorname{Sub}_{\mathscr{A}}(N) \mid E \subset M \}.$

Let $(E_i)_{i \in I}$ be a family of subsets of N. Then

Received October 18, 1993 Revised April 25, 1994