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Introduction.

In this paper, we shall consider the problem whether or not there exists a compact
space-like m-dimensional submanifold in a pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ with
parallel mean curvature vector which is not totally umbilic.

A pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ is an $(m+p)$-dimensional indefinite Rie-
mannian space of index $p$ and with constant curvature $c>0$ , which is constructed
in a pseudo-Euclidean space $R_{p}^{m+1+p}$ as follows. First, a pseudo-Euclidean space
$R_{p}^{m+p+1}$ is of real $(m+p+1)$-tuples $x=(x_{1}, \cdots, x_{m+p+1})$ with scalar product

$\langle x, y\rangle=\sum_{i=1}^{m+1}x_{i}y_{i}-\sum_{\alpha=m+2}^{m+p+1}x_{\alpha}y_{\alpha}$ .

Then

$S_{p}^{m+p}(c)=\{x\in R_{p}^{m+p+1}|\langle x, x\rangle=1/c\}$ .
In the special case $p=1$ , we call $S_{1}^{m+1}(c)$ a de Sitter space.

Let us consider $M$ a compact space-like m-dimensional submanifold in $ffl_{p}^{+p}(c)_{:}$

Then $M$ is diffeomorphic to a Riemannian sphere $S^{m}$ . (See Lemma 1 in \S 1). Here, $M$

is totally umbilic if and only if $M$ is a space-like $(m+1)$-plane section in $S_{p}^{m+p}(c)$ , and
then, $M$ is congruent to a Riemannian sphere $S^{m}(c^{\prime})$ of constant curvature $c^{\prime}$ where
$c\geq c^{\prime}>0$ .

Montiel [9] has proved that a compact space-like hypersurface $M$ in a de Sitter
space $S_{1}^{m+1}(c)$ is totally umbilic if the mean curvature $H$ of $M$ is constant.

So we have been considering the higher codimensional case, and gotten the
following.
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