Tokyo J. Math. Vol. 18, No. 1, 1995

Compact Space-Like *m*-Submanifolds in a Pseudo-Riemannian Sphere $S_p^{m+p}(c)$

Reiko AIYAMA

University of Tsukuba (Communicated by T. Nagano)

Dedicated to Professor Tsunero Takahashi on his 60th birthday

Introduction.

In this paper, we shall consider the problem whether or not there exists a compact space-like *m*-dimensional submanifold in a pseudo-Riemannian sphere $S_p^{m+p}(c)$ with parallel mean curvature vector which is not totally umbilic.

A pseudo-Riemannian sphere $S_p^{m+p}(c)$ is an (m+p)-dimensional indefinite Riemannian space of index p and with constant curvature c>0, which is constructed in a pseudo-Euclidean space R_p^{m+1+p} as follows. First, a pseudo-Euclidean space R_p^{m+p+1} is of real (m+p+1)-tuples $x = (x_1, \dots, x_{m+p+1})$ with scalar product

$$\langle x, y \rangle = \sum_{i=1}^{m+1} x_i y_i - \sum_{\alpha=m+2}^{m+p+1} x_\alpha y_\alpha \, .$$

$$S_p^{m+p}(c) = \{x \in \mathbb{R}_p^{m+p+1} \mid \langle x, x \rangle = 1/c\}.$$

In the special case p=1, we call $S_1^{m+1}(c)$ a de Sitter space.

Let us consider M a compact space-like *m*-dimensional submanifold in $S_p^{m+p}(c)$. Then M is diffeomorphic to a Riemannian sphere S^m . (See Lemma 1 in §1). Here, M is totally umbilic if and only if M is a space-like (m+1)-plane section in $S_p^{m+p}(c)$, and then, M is congruent to a Riemannian sphere $S^m(c')$ of constant curvature c' where $c \ge c' > 0$.

Montiel [9] has proved that a compact space-like hypersurface M in a de Sitter space $S_1^{m+1}(c)$ is totally umbilic if the mean curvature H of M is constant.

So we have been considering the higher codimensional case, and gotten the following.

Received July 6, 1993 Revised October 18, 1993

Then