On Certain Multiple Series with Functional Equation in a Totally Real Number Field I

Takayoshi MITSUI

Gakushuin University

§1. Introduction.

In the analytic theory of partition function, the double series

(1.1)
$$f(\tau) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m} e^{-2\pi mn\tau} \qquad (\text{Re}\tau > 0)$$

plays an important role. It is well-known that $f(\tau)$ satisfies the functional equation:

(1.2)
$$f(\tau) - \frac{\pi}{12\tau} - \frac{1}{4}\log \tau = f\left(\frac{1}{\tau}\right) - \frac{\pi}{12}\tau - \frac{1}{4}\log \frac{1}{\tau} .$$

This remarkable equation has been proved by various methods (cf. Chandrasekharan [1, p. 170] or Schoenfeld [5]).

In this paper, we shall consider a multiple series that is a generalization of (1.1) in a totally real number field and prove that it satisfies a functional equation.

Let K be a totally real number field of degree n, $K^{(q)}$ $(q = 1, \dots, n)$ the conjugates of K. Let b be the differente ideal of K, D = N(b) (norm of b) the absolute value of the discriminant of K, and R the regulator of K.

If μ is a number of K, then we denote by $\mu^{(q)}$ the conjugates of μ in $K^{(q)}$ $(q=1, \dots, n)$. We define n-dimensional vector $\mu = (\mu^{(1)}, \dots, \mu^{(n)})$. More generally, we shall often use n-dimensional complex vector $\xi = (\xi_1, \dots, \xi_n)$. For such ξ we put

$$S(\xi) = \sum_{q=1}^{n} \xi_q$$
, $N(\xi) = \prod_{q=1}^{n} \xi_q$.

Let τ_1, \dots, τ_n be complex numbers with positive real parts. Let \mathfrak{a} and \mathfrak{b} be the fractional ideals of K. For such \mathfrak{a} , \mathfrak{b} and τ_1, \dots, τ_n , we define the series $M(\tau; \mathfrak{a}, \mathfrak{b})$ as follows:

(1.3)
$$M(\tau; a, b) = \sum_{\substack{(\mu) = a \\ (\mu) \neq 0}} \frac{1}{|N(\mu)|} \sum_{\substack{\nu = b \\ \nu \neq 0}} \exp\{-2\pi S(|\mu\nu|\tau)\},$$