On Certain Multiple Series with Functional Equation in a Totally Real Number Field I

Takayoshi MITSUI

Gakushuin University

§ 1. Introduction.

In the analytic theory of partition function, the double series

$$
\begin{equation*}
f(\tau)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m} e^{-2 \pi m n \tau} \quad(\operatorname{Re} \tau>0) \tag{1.1}
\end{equation*}
$$

plays an important role. It is well-known that $f(\tau)$ satisfies the functional equation:

$$
\begin{equation*}
f(\tau)-\frac{\pi}{12 \tau}-\frac{1}{4} \log \tau=f\left(\frac{1}{\tau}\right)-\frac{\pi}{12} \tau-\frac{1}{4} \log \frac{1}{\tau} . \tag{1.2}
\end{equation*}
$$

This remarkable equation has been proved by various methods (cf. Chandrasekharan [1, p. 170] or Schoenfeld [5]).

In this paper, we shall consider a multiple series that is a generalization of (1.1) in a totally real number field and prove that it satisfies a functional equation.

Let K be a totally real number field of degree $n, K^{(q)}(q=1, \cdots, n)$ the conjugates of K. Let D be the differente ideal of $K, D=N(\mathfrak{D})$ (norm of \mathfrak{D}) the absolute value of the discriminant of K, and R the regulator of K.

If μ is a number of K, then we denote by $\mu^{(q)}$ the conjugates of μ in $K^{(q)}(q=1, \cdots, n)$. We define n-dimensional vector $\mu=\left(\mu^{(1)}, \cdots, \mu^{(n)}\right)$. More generally, we shall often use n-dimensional complex vector $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$. For such ξ we put

$$
S(\xi)=\sum_{q=1}^{n} \xi_{q}, \quad N(\xi)=\prod_{q=1}^{n} \xi_{q}
$$

Let $\tau_{1}, \cdots, \tau_{n}$ be complex numbers with positive real parts. Let \mathfrak{a} and b be the fractional ideals of K. For such $\mathfrak{a}, \mathfrak{b}$ and $\tau_{1}, \cdots, \tau_{n}$, we define the series $M(\tau ; \mathfrak{a}, \mathfrak{b})$ as follows:

$$
\begin{equation*}
M(\tau ; \mathfrak{a}, \mathfrak{b})=\sum_{\substack{(\mu)=\mathfrak{a} \\(\mu) \neq \boldsymbol{o}}} \frac{1}{|N(\mu)|} \sum_{\substack{v \in \mathfrak{b} \\ v \neq 0}} \exp \{-2 \pi S(|\mu \nu| \tau)\}, \tag{1.3}
\end{equation*}
$$

