Tokyo J. Math. Vol. 18, No. 1, 1995

Symplectic Geometry and Deformation of Infinite Dimensional Cycles Associated to Cauchy-Riemann Operators

Hiroshi MORIMOTO

Nagoya University (Communicated by Y. Maeda)

1. Introduction.

Let *M* be a Riemann surface, and *P* be a principal bundle over *M* with structure group U(n). For every connection *A* on *P* we can associate $\bar{\partial}_A$ -operator as follows. We denote by $\Omega_c^1(M, \operatorname{ad}(P))$ the complex vector space of 1-forms over *M* valued on $\operatorname{ad}(P)$. In parallel with the decomposition of this vector space:

$$\Omega^{1}_{\boldsymbol{C}}(\boldsymbol{M}, \operatorname{ad}(\boldsymbol{P})) = \Omega^{1,0}(\boldsymbol{M}, \operatorname{ad}(\boldsymbol{P})) \oplus \Omega^{0,1}(\boldsymbol{M}, \operatorname{ad}(\boldsymbol{P})) \,.$$

the covariant derivative d_A decomposes into ∂_A and $\bar{\partial}_A$:

$$d_A = \partial_A + \bar{\partial}_A ,$$

$$\partial_A : \Omega^0_{\mathcal{C}}(M, \operatorname{ad}(P)) \to \Omega^{1,0}(M, \operatorname{ad}(P)) ,$$

$$\bar{\partial}_A : \Omega^0_{\mathcal{C}}(M, \operatorname{ad}(P)) \to \Omega^{0,1}(M, \operatorname{ad}(P)) .$$

Hence the Cauchy-Riemann operator $\bar{\partial}_A$ is associated to each connection A. We have therefore a family of Fredholm operators $\{\bar{\partial}_A\}_{A \in \mathscr{A}}$ parametrize by \mathscr{A} :

$$\mathscr{A} \ni A \mapsto \bar{\partial}_A.$$

Let \mathscr{G} denote the gauge transformation group. Due to the gauge invariance of $\{\bar{\partial}_A\}_{A \in \mathscr{A}}$, if we take as a parameter space the quotient space \mathscr{A}/\mathscr{G} instead of \mathscr{A} , then we see that the above association can be reduced to \mathscr{A}/\mathscr{G} . Thus we get a new family of operators

$$\mathscr{A}/\mathscr{G} \ni [A] \mapsto \overline{\partial}_{[A]}$$
.

This defines an element of k-theory over \mathscr{A}/\mathscr{G} (see [2], [5], [10]).

These correspondences among operators $\{\bar{\partial}_A\}$, $\{\bar{\partial}_{[A]}\}$ and parameter spaces \mathcal{A} , \mathcal{A}/\mathcal{G} are easily generalized to a general situation, i.e., a correspondence with Fredholm

Received July 21, 1993 Revised March 20, 1994