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Introduction.

We give some canonical cycles of reduced ideals for the real quadratic fields
$K=Q(\sqrt{m})$ with $m=4q^{2}+1,$ $m=q^{2}+4$ ( $q$ odd), $m=q^{2}+1$ ( $q$ odd) and $m=q^{2}\pm 2$

($q$ odd). Lower bounds of the class number $h(K)$ and the caliber Cal(K) (number of re-
duced ideals) are given. Some of those lower bounds for the class number are obtain-
ed, by other methods, in [2].

Let $m$ be a square free integer, $K$ the quadratic field $\otimes\sqrt{m}$), $\theta=(1+\sqrt{m})/2$ if $m\equiv 1$

(4) and $\sqrt{m}$ otherwise, $\theta^{\tau}$ the conjugate of $\theta,$ $F(X)=(X-\theta)(X-\theta^{\tau})$ the fundamental
polynom of $K$ and $D(K)=(\theta-\theta^{\tau})^{2}$ the discriminant of $K$. Every reduced ideal $\mathfrak{a}$ of $K$

is presented in the form $[a, \theta-c]$ where $a$ is the norm of $\mathfrak{a},$ $c$ an integer such that
$0<\theta-c<a$ and $F(c)=-ab$ . $\mathfrak{a}=[a, \theta-c]$ is reduced when $(a+b)^{2}\leq D(K)$ and a cycle
of reduced ideals starts from $\mathfrak{a}$ to the reduced ideal $\mathfrak{a}_{1}=((\theta^{\tau}-c)/a)\mathfrak{a}=[b, \theta-c_{1}]$ , this
operation is repeated until we obtain $\mathfrak{a}$ another time (see [1]). The class number of $K$

is equal to the number of cycles and the caliber is the sum of the numbers counting
reduced ideals in every cycle. In what follows $\tau(x)$ denotes the number of distinct positive
divisors of the integer $x$ .

I. $m=4q^{2}+1,$ $F(X)=X^{2}-X-q^{2}$ . Letdbeaproper divisor of q, and putq $=\lambda d$.
From

$F(1)=-q^{2}$ , $ F(q)=-q=-d\lambda$ ,

$F(q+1-\lambda)=-\lambda(2q+1-d-\lambda)$ , $F(q+1-d)=-d(2q+1-d-\lambda)$ ,

we construct the cycles:

$-[1, \theta-q]\rightarrow[q, \theta-1]\rightarrow[q, \theta-q]$ ,

$-[d, \theta-q]\rightarrow[\lambda, \theta-(q+1-\lambda)]\rightarrow[2q+1-\lambda-d, \theta-(q+1-d)]$ .
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