Токуо Ј. Матн. Vol. 18, No. 2, 1995

Zeta Function and Perron-Frobenius Operator of Piecewise Linear Transformations on R^k

Makoto MORI

National Defense Academy (Communicated by M. Sugiura)

§1. Introduction.

In [7], we considered a piecewise linear transformation F on \mathbb{R}^k into itself. Roughly speaking, we determined the eigenvalues of the Perron-Frobenius operator P corresponding to the transformation F by the zeros of the Fredholm determinant $\det(I-\Phi_n(z))$ (the definition of the Fredholm matrix $\Phi_n(z)$ will be given in the next section).

We denote by J^o , J^{cl} and $\Delta J = J^{cl} \setminus J^o$ be the inner, the closure and the boundary of a set J. Set

$$\xi = \liminf_{n \to \infty} \operatorname{ess\,inf}_{x \in I} \frac{1}{n} \log |\det D(F^n)(x)|,$$

$$\lambda = \limsup_{n \to \infty} \sup_{J} \frac{1}{n} \log \# \{ w \in \mathscr{W} : |w| = n, \langle w \rangle \cap \Delta J \neq \emptyset \},$$

where $D(F^n)$ is the jacobian matrix of F^n , \sup_J is the supremum over all possible convex polyhedrons J, \mathcal{W} is a set of words, and $\langle w \rangle$ is a parallelopiped which corresponds to a word $w \in \mathcal{W}$ (see §2 for precise definitions). We say that F is expanding if

$$\liminf_{n \to \infty} \frac{1}{n} \operatorname{ess\,inf\,log\,min\,|\,the\,\,eigenvalue\,\,of\,\,D(F^n)(x)| > 0}\,.$$

Our theorem in [7] is:

THEOREM A. Assume that F is expanding and $\xi > \lambda$.

(i) Then for any $\varepsilon > 0$, there exists an integer n_0 and for $n \ge n_0$ and $|z| < e^{\xi - \lambda - \varepsilon}$, z^{-1} belongs to the spectrum of the Perron-Frobenius operator P restricted to \mathscr{B} if and only if

$$\det(I-\Phi_n(z))=0$$

(ii) The eigenfunctions of P on L^1 associated with eigenvalues modulus 1 belong to \mathcal{B} .

Received May 11, 1994