On the Banach Algebra M(p, q) $(1 \le p < q \le \infty)$

Enji SATO* and Takako ABE

Yamagata University
(Communicated by S. Suzuki)

1. Introduction.

Let G be an infinite compact abelian group, Γ (or \hat{G}) the dual group, M(G) the convolution measure algebra on G, and $L^p(G)$ the L^p -space with respect to the Haar measure m_G on G for $1 \le p \le \infty$. Also for $1 \le p \le q \le \infty$ let M(p,q) be the set of all translation invariant bounded linear operators from $L^p(G)$ to $L^q(G)$. For $\mu \in M(G)$, μ is called an L^p -improving measure, if $\mu \in M(r,s)$ for some $1 \le r < s \le \infty$ (cf. [5]). When p < q, M(p,q) is a commutative Banach algebra without unit with the operator norm, and M(p,p) is a commutative Banach algebra with unit.

The purpose of this paper is an investigation of Fourier multiplier algebra M(p, q) $(1 \le p < q \le \infty)$.

Hatori [10] characterized $\Lambda(p)$ -sets on \hat{G} by using the Banach algebra M(p,q) (1 (cf. [3], [4]). Also, he characterized the maximal ideal space of <math>M(p,q) (1 . These results are showed by applying Stone-Čech's compactification.

In § 2, we give proofs of Theorems 2.2 and 2.5 that are simple proofs of his results, by the method of [12] and [20] without using Stone-Čech's compactification.

Igari-Sato [12] studied the operating function of M(p,q) $(1 \le p \le q \le \infty)$. The domain of the operating function is [-1, 1]. In § 3, we investigate the operating function whose domain is the complex plane. When G is the unit circle, our result is an extension of Rider's result [14] (cf. [16]).

There are many papers [5], [15], etc. about L^p -improving measures. But it seems that it is unknown about L^p -improving measures on thin sets (cf. [5; Open questions]). In §4, we construct non L^p -improving measures on some independent set, that are in $M_0(G)$ that is the set of all bounded regular Borel measures whose Fourier-Stieltjes transforms vanish at infinity.

Received October 9, 1995

Revised May 14, 1996

^{*} Supported in part by the Grants in Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.