Токуо J. Матн. Vol. 20, No. 2, 1997

Dipolarizations in Compact Lie Algebras and Homogeneous Parakähler Manifolds

Zixin HOU, Shaoqiang DENG and Soji KANEYUKI

Nankai University and Sophia University

Introduction.

Let g be a real Lie algebra and g^{\pm} be two subalgebras of g and ρ be an alternating 2-form on g. Then the triple $\{g^+, g^-, \rho\}$ is called a *weak dipolarization* in g if the following conditions are satisfied:

 $(WD1) \quad g = g^+ + g^-,$

(WD2) $\rho(g^+, g^+) = \rho(g^-, g^-) = 0,$

(WD3) $\rho(X, g) = 0$ if and only if $X \in g^+ \cap g^-$,

(WD4) $\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0, \forall X, Y, Z \in \mathfrak{g}.$

A dipolarization in g is a triple $\{g^+, g^-, f\}$, formed by two subalgebras g^{\pm} and a linear form f, which satisfies the following conditions:

(D1) $g = g^+ + g^-$,

(D2) $f([g^+, g^+]) = f([g^-, g^-]) = 0,$

(D3) f([X, g]) = 0 if and only if $X \in g^+ \cap g^-$.

A dipolarization $\{g^+, g^-, f\}$ is itself a weak dipolarization, since df satisfies (WD2)-(WD4). A weak dipolarization is called *symmetric* if g^+ is Lie-isomorphic to g^- . Otherwise it is called *nonsymmetric*. A dipolarization (resp. weak dipolarization) is called *trivial*, if $g^+ = g^- = g$, and if f=0 (resp. $\rho=0$).

The notions of dipolarizations and weak dipolarizations in a Lie algebra were first introduced by Kaneyuki ([6]) to describe a class of homogeneous symplectic manifolds, called *homogeneous parakähler manifolds*. Let us recall the definition of homogeneous parakähler manifolds ([6]). A parakähler manifold M is, by definition, a symplectic manifold which admits a pair of transversal Lagrangian foliations. If a Lie group Gacts on M as symplectomorphisms which preserves each of the two foliations, then we say that the parakähler structure is G-invariant. Furthermore, if G acts transitively on M, then M is said to be a *homogeneous parakähler manifold*. It was proved in [6] that a necessary and sufficient condition for the existence of an invariant parakähler structure on M = G/H (H is an isotropy subgroup) is that there exists a weak dipolarization in

Received January 29, 1996