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Introduction.

Let $\mathfrak{g}$ be a real Lie algebra and $\mathfrak{g}^{\pm}$ be two subalgebras of $\mathfrak{g}$ and $p$ be an alternating
2-form on $\mathfrak{g}$ . Then the triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ is called a weak dipolarization in $\mathfrak{g}$ if the
following conditions are satisfied:

(WD1) $\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ ,
(WD2) $\rho(\mathfrak{g}^{+}, \mathfrak{g}^{+})=\rho(\mathfrak{g}^{-}, \mathfrak{g}^{-})=0$ ,
(WD3) $\rho(X, \mathfrak{g})=0$ if and only if $X\in \mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ ,
(WD4) $\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0,$ $\forall X,$ $Y,$ $Z\in \mathfrak{g}$ .
A dipolarization in $\mathfrak{g}$ is a triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\}$ , formed by two subalgebras $\mathfrak{g}^{\pm}$ and a

linear form $f$, which satisfies the following conditions:
(D1) $\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ ,
(D2) $f([\mathfrak{g}^{+}, \mathfrak{g}^{+}])=f([\mathfrak{g}^{-}, \mathfrak{g}^{-}])=0$ ,
(D3) $f([X, \mathfrak{g}])=0$ if and only if $X\in \mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ .
A dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\}$ is itself a weak dipolarization, since $df$ satisfies

$(WD2)-(WD4)$ . A weak dipolarization is called symmetric if $\mathfrak{g}^{+}$ is Lie-isomorphic to
$\mathfrak{g}^{-}$ . Otherwise it is called nonsymmetric. A dipolarization (resp. weak dipolarization) is
called trivial, if $\mathfrak{g}^{+}=\mathfrak{g}^{-}=\mathfrak{g}$ , and if $f=0$ (resp. $\rho=0$).

The notions of dipolarizations and weak dipolarizations in a Lie algebra were first
introduced by Kaneyuki ([6]) to describe a class of homogeneous symplectic manifolds,
called homogeneous parakahler manifolds. Let us recall the definition of homogeneous
parak\"ahler manifolds ([6]). A parak\"ahler manifold $M$ is, by definition, a symplectic
manifold which admits a pair of transversal Lagrangian foliations. If a Lie group $G$

acts on $M$ as symplectomorphisms which preserves each of the two foliations, then we
say that the parak\"ahler structure is G-invariant. Furthermore, if $G$ acts transitively on
$M$, then $M$ is said to be a homogeneous parakahler manifold. It was proved in [6] that
a necessary and sufficient condition for the existence of an invariant parak\"ahler structure
on $M=G/H$ ($H$ is an isotropy subgroup) is that there exists a weak dipolarization in
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