On Certain Multiple Series with Functional Equation in a Totally Real Number Field II

Takayoshi MITSUI

Gakushuin University

1. Introduction.

This is a continuation of the preceding paper [3] with the same title. We shall treat the series with "fractional powers" (see (1.1) below), which is a generalization of the series

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{n} e^{-2\pi m^k n\tau} \qquad (\tau > 0).$$

Let K be a totally real number field of degree n and $K^{(q)}$ $(q=1, \dots, n)$ be the conjugates of K. Let μ be a number of K. We denote by $\mu^{(q)}$ the conjugates of μ in $K^{(q)}$ $(q=1, \dots, n)$ and define n-dimensional vector $\mu = (\mu^{(1)}, \dots, \mu^{(n)})$ correspondingly. More generally, we consider n-dimensional complex vectors $\xi = (\xi_1, \dots, \xi_n)$. For such ξ we put

$$S(\xi) = \sum_{q=1}^{n} \xi_q$$
, $N(\xi) = \prod_{q=1}^{n} \xi_q$.

Let U be the unit group of K and $U^k = \{ \varepsilon^k \mid \varepsilon \in U \}$ the subgroup of U consisting of the k-th powers of units. Let α , β be the numbers of K. If α/β is an element of U^k , we say that α and β are associated with respect to U^k . Let k and l be coprime positive integers and τ_1, \dots, τ_n be non-zero complex numbers such that

$$|\arg \tau_q| < \frac{\pi}{2k}$$
 $(q=1, \dots, n)$.

Let a and b be non-zero fractional ideals of K.

For such numbers $\tau_1, \dots, \tau_n, k, l$ and ideals α, b , we shall define the series as follows:

(1.1)
$$M(\tau; a, b; k, l) = M(\tau_1, \dots, \tau_n; a, b; k, l) = \sum_{\substack{\mu/U^k \\ 0 \neq \mu \in a}} \frac{1}{|N(\mu)|} \sum_{\substack{0 \neq v \in b}} \exp\{-2\pi S(|v|^{k/l} |\mu| \tau^k)\},$$