Nonlinear Ergodic Theorems in a Banach Space Satisfying Opials's Condition

Sachiko ATSUSHIBA and Wataru TAKAHASHI

Tokyo Institute of Technology (Communicated by Ma. Kato)

1. Introduction.

Let C be a nonempty closed convex subset of a real Banach space E. Then a mapping $T: C \to C$ is called nonexpansive, if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. We denote by F(T) the set of fixed points of T. Let G be a commutative semigroup with identity and let $\mathcal{S} = \{T(s) : s \in G\}$ be a family of nonexpansive mappings of C into itself satisfying T(s+t) = T(s)T(t) for all $s, t \in G$, which is called a nonexpansive semigroup on C. Then, $u: G \to C$ is called an almost-orbit of $\mathcal{S} = \{T(s) : s \in G\}$ if

$$\lim_{s} \sup_{t} \|u(t+s) - T(t)u(s)\| = 0,$$

where the binary relation \leq on G is defined by $a \leq b$ if and only if there exists $c \in G$ such that a+c=b. The notion of such an almost-orbit was introduced by Takahashi and Park [24]; see Bruck [4] in the case of $G = \{1, 2, 3, \dots\}$ and Miyadera and Kobayasi [15] in the case of $G = \{t : 0 \leq t < \infty\}$.

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space was established by Baillon [1]: Let C be a nonempty closed convex subset of a Hilbert space and let T be a nonexpansive mapping of C into itself. If the set F(T) is nonempty, then for each $x \in C$, the Cesàro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converge weakly to some $y \in F(T)$. In Baillon's theorem, putting y = Px for each $x \in C$, P is a nonexpansive retraction of C onto F(T) such that $PT^n = T^nP = P$ for all positive integers n and $Px \in \overline{co} \{T^nx : n = 1, 2, \dots\}$ for each $x \in C$, where $\overline{co} A$ is the closure of the convex hull of A. Takahashi [20, 22] proved the existence of such retractions, "ergodic retractions", for noncommutative semigroups of nonexpansive mappings in a