Токуо J. Матн. Vol. 21, No. 2, 1998

On the Uniqueness of a Weyl Structure with Prescribed Ricci Curvature

Minyo KATAGIRI

Nara Women's University (Communicated by T. Nagano)

1. Introduction.

Let M be an *n*-dimensional manifold with a conformal class C. A conformal connection on M is an affine connection D preserving the conformal class C. We also assume D is torsion-free. The triple (M, C, D) is called a *Weyl manifold* or (C, D) is called a *Weyl structure* on M. In general, the Ricci curvature Ric^D of D is not symmetric, so we denote by Sym(Ric^D) its symmetric part.

We consider a problem of a Weyl structure with prescribed Ricci curvature as follows: For a given conformal class C and a (0, 2)-tensor H, can we find a conformal connection D such that $\operatorname{Ric}^{D} = H$? In this paper, we prove the following result on uniqueness for the problem.

THEOREM 1. Let M be a closed connected n-manifold, $n \ge 3$, with a conformal class C, and let D and \overline{D} be torsion-free conformal connections of (M, C). If Sym(Ric^D) = Sym(Ric^{\overline{D}}), then $D = \overline{D}$.

The result shows for a conformal connection, the symmetric part of the Ricci curvature determines the full Ricci curvature. The following corollary is due to [7].

COROLLARY 2. Let (M, C, D) be a closed connected Weyl n-manifold, $n \ge 3$. If $Sym(Ric^{D}) = Ric_{g}$ for some Riemannian metric $g \in C$, then D is the Levi-Civita connection of g, and such a g is unique in C up to a constant multiple.

2. Preliminaries.

Let (M, C, D) be a Weyl manifold. We assume $n = \dim M \ge 3$. Then there is a unique 1-form ω_g such that $Dg = \omega_g \otimes g$.

We denote by Ric^{D} the Ricci curvature of D, and by $\operatorname{Sym}(\operatorname{Ric}^{D})$ the symmetric part of the Ricci curvature. The scalar curvature R_{g}^{D} of D with respect to $g \in C$ is defined

Received April 8, 1997