Токуо Ј. Матн. Vol. 21, No. 2, 1998

On Direct Sum Decomposition of Integers and Y. Ito's Conjecture

Masahito DATEYAMA and Teturo KAMAE

Osaka City University (Communicated by Y. Maeda)

Let $N = \{0, 1, 2, \dots\}$. Every element $a \in N$ can be expressed as

 $a = \sum_{i=0}^{n} \alpha_i 2^i$ for some n

where $\alpha_i \in \{0, 1\}$ for all *i*'s.

We can identify a with $(\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_n, 0, 0, \dots) \in \{0, 1\}^N$. We also identify $\{0, 1\}^N$ in the usual way with \mathbb{Z}_2 , the completion of \mathbb{Z} in the 2-adic valuation norm.

Thus N is imbedded in \mathbb{Z}_2 as the 0-1-sequences with only finitely many 1's, while the negative integers are imbedded as those with finitely many 0's. For example, if *a* is a positive integer corresponding to the 0-1-sequence as above with $\alpha_i = 0$ for any i > n, then -a is identified with $(0, \dots, 0, 1, \overline{\alpha_{m+1}}, \overline{\alpha_{m+2}}, \dots)$, where *m* is the smallest *i* with

 $a_i = 1$ and we denote $\overline{0} = 1$, $\overline{1} = 0$.

We denote by \overline{E} the closure of a subset E of \mathbb{Z}_2 . Let us denote

$$A = \left\{ \sum_{i} \varepsilon_i 2^{2i+1}; \ \varepsilon_i \in \{0, 1\} \text{ and } \varepsilon_i = 1 \text{ for finitely many } i\text{'s} \right\}.$$

For $\omega = (\omega_0, \omega_1, \cdots) \in \{-1, 1\}^N$ with $\omega_i = -1$ for infinitely many times, denote

$$B_{\omega} = \left\{ \sum_{i} \varepsilon_{i} \omega_{i} 2^{2i}; \ \varepsilon_{i} \in \{0, 1\} \text{ and } \varepsilon_{i} = 1 \text{ for finitely many } i's \right\}.$$

Let us denote

$$\mathscr{C}(A) = \{ C \subset \mathbf{Z}; \ 0 \in C \text{ and } A \oplus C = \mathbf{Z} \},\$$

where $A \oplus C = \mathbb{Z}$ implies that any element in \mathbb{Z} can be written uniquely as a sum of elements in A and C.

Received March 24, 1997