On Direct Sum Decomposition of Integers and Y. Ito's Conjecture

Masahito DATEYAMA and Teturo KAMAE

Osaka City University

(Communicated by Y. Maeda)

Let $\mathbf{N}=\{0,1,2, \cdots\}$. Every element $a \in \mathbf{N}$ can be expressed as

$$
a=\sum_{i=0}^{n} \alpha_{i} 2^{i} \quad \text { for some } n
$$

where $\alpha_{i} \in\{0,1\}$ for all i 's.
We can identify a with $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, 0,0, \cdots\right) \in\{0,1\}^{\mathrm{N}}$. We also identify $\{0,1\}^{\mathbf{N}}$ in the usual way with \mathbf{Z}_{2}, the completion of \mathbf{Z} in the 2-adic valuation norm.

Thus \mathbf{N} is imbedded in \mathbf{Z}_{2} as the 0 -1-sequences with only finitely many 1's, while the negative integers are imbedded as those with finitely many 0 's. For example, if a is a positive integer corresponding to the $0-1$-sequence as above with $\alpha_{i}=0$ for any $i>n$, then $-a$ is identified with $(\underbrace{0, \cdots, 0,1}_{m+1}, \overline{\alpha_{m+1}}, \overline{\alpha_{m+2}}, \cdots)$, where m is the smallest i with $a_{i}=1$ and we denote $\overline{0}=1, \overline{1}=0$.

We denote by \bar{E} the closure of a subset E of \mathbf{Z}_{2}.
Let us denote

$$
A=\left\{\sum_{i} \varepsilon_{i} 2^{2 i+1} ; \varepsilon_{i} \in\{0,1\} \text { and } \varepsilon_{i}=1 \text { for finitely many } i \prime s\right\} .
$$

For $\omega=\left(\omega_{0}, \omega_{1}, \cdots\right) \in\{-1,1\}^{\mathbf{N}}$ with $\omega_{i}=-1$ for infinitely many times, denote

$$
B_{\omega}=\left\{\sum_{i} \varepsilon_{i} \omega_{i} 2^{2 i} ; \varepsilon_{i} \in\{0,1\} \text { and } \varepsilon_{i}=1 \text { for finitely many } i \prime \mathrm{~s}\right\} .
$$

Let us denote

$$
\mathscr{C}(A)=\{C \subset \mathbf{Z} ; 0 \in C \text { and } A \oplus C=\mathbf{Z}\},
$$

where $A \oplus C=\mathbf{Z}$ implies that any element in \mathbf{Z} can be written uniquely as a sum of elements in A and C.

