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Let $N=\{0,1,2, \cdots\}$ . Every element $a\in N$ can be expressed as

$a=\sum_{i=0}^{n}\alpha_{i}2^{i}$ for some $n$

where $\alpha_{i}\in\{0,1\}$ for all $i’ s$ .
We can identify $a$ with $(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, 0,0, \cdots)\in\{0,1\}^{N}$ . We also identify

$\{0,1\}^{N}$ in the usual way with $Z_{2}$ , the completion of $Z$ in the 2-adic valuation norm.
Thus $N$ is imbedded in $Z_{2}$ as the O-l-sequences with only finitely many l’s, while

the negative integers are imbedded as those with finitely many $O’ s$ . For example, if $a$ is
a positive integer corresponding to the O-l-sequence as above with $\alpha_{i}=0$ for any $i>n$ ,
then $-a$ is identified with

$\frac{(0,\cdots,0,1}{m+1},$
$\overline{\alpha_{m+1}},$ $\overline{\alpha_{m+2}},$ $\cdots$ ), where $m$ is the smallest $i$ with

$a_{i}=1$ and we denote $\overline{0}=1,$ $\overline{1}=0$ .
We denote by $\overline{E}$ the closure of a subset $E$ of $Z_{2}$ .
Let us denote

$A=\{\sum_{i}\epsilon_{i}2^{2i+1}$ ; $\epsilon_{i}\in\{0,1\}$ and $\epsilon_{i}=1$ for finitely many $i’ s\}$ .

For $\omega=(\omega_{0}, \omega_{1}, \cdots)\in\{-1,1\}^{N}$ with $\omega_{i}=-1$ for infinitely many times, denote

$B_{\omega}=\{\sum_{i}\epsilon_{i}\omega_{i}2^{2i}$ ; $\epsilon_{i}\in\{0,1\}$ and $\epsilon_{i}=1$ for finitely many $i’ s\}$ .

Let us denote

$\mathscr{C}(A)=$ { $C\subset Z;O\in C$ and $A\oplus C=Z$ } ,

where $A\oplus C=Z$ implies that any element in $Z$ can be written uniquely as a sum of
elements in $A$ and $C$.
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