Initial Value Problems for the Heat Convection Equations in Exterior Domains

Kazuo ŌEDA and Nami MATSUDA

Japan Women's University and Saint Paul's University
(Communicated by K. Akao)

1. Introduction.

We consider the initial value problem (IVP) of the heat convection equation (HCE) of Boussinesq type in an exterior domain $\Omega = K^c \subset \mathbb{R}^m$ (m=2 or 3), where K is a compact set with a smooth boundary $\Gamma = \partial K \in C^2$. We denote $\hat{\Omega} = \Omega \times (0, T)$. Then the problem (IVP) for (HCE) is as follows:

$$\begin{cases} u_t + (u \cdot \nabla)u = -(\nabla p)/\rho + \{1 - \alpha(\theta - \Theta_0)\}g + v\Delta u & \text{in } \hat{\Omega}, \\ \operatorname{div} u = 0 & \text{in } \hat{\Omega}, \\ \theta_t + (u \cdot \nabla)\theta = \kappa \Delta \theta & \text{in } \hat{\Omega}, \end{cases}$$
 (1)

$$u|_{\Gamma} = 0$$
, $\theta|_{\Gamma} = \Theta_0 > 0$, $\lim_{|x| \to \infty} u(x, t) = 0$, $\lim_{|x| \to \infty} \theta(x, t) = 0$ for $t \in (0, T)$, (2)

$$u|_{t=0} = a$$
, $\theta|_{t=0} = h$. (3)

Here, u=u(x, t) is the velocity vector, p=p(x, t) is the pressure and $\theta=\theta(x, t)$ is the temperature; v, κ , α , ρ and g=g(x) are the kinematic viscosity, the thermal conductivity, the coefficient of volume expansion, the density at $\theta=\Theta_0$ and the gravitational vector, respectively.

Hishida [2] and Hishida-Yamada [3] studied the exterior problem for (HCE) and proved the global existence of the strong solution of (IVP) when K is a ball, while the second author of our present paper has recently shown in [6] (which is her Master thesis) the existence of a weak solution of (IVP) for (HCE) in the case that K is a compact set with a smooth boundary of class C^2 . In \overline{O} eda-Matsuda [10], we announced the existence result (m=2 or 3) together with the uniqueness of a weak solution for the 2-dimensional problem. In the present paper, we will give details of proofs of the results announced in [10], and furthermore, show the uniqueness theorem of a weak solution for the 3-dimensional problem. As the equations (1) tell us, (HCE) is the system which