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1. Introduction.

We consider the initial value problem (IVP) of the heat convection equation (HCE)

of Boussinesq type in an exterior domain $\Omega=K^{c}\subset R^{m}(m=2or3)$ , whereK isacom-
pact set with a smooth boundary $\Gamma=\partial K\in C^{2}$ . We denote $\hat{\Omega}=\Omega\times(0, T)$ . Then the
problem (IVP) for (HCE) is as follows:

$\left\{\begin{array}{ll}u_{t}+(u\cdot\nabla)u=-(\nabla p)/\rho+\{1-\alpha(\theta-\Theta_{0})\}g+v\Delta u & in \Omega,\\div u=0 & in \hat{\Omega} ,\\\theta_{t}+(u\cdot\nabla)\theta=\kappa\Delta\theta & in \hat{\Omega},\end{array}\right.$ (1)

$u|_{\Gamma}=0$ , $\theta|_{\Gamma}=\Theta_{0}>0$ , $\lim_{|x|\rightarrow\infty}u(x, t)=0$
, $\lim_{|x|\rightarrow\infty}\theta(x, t)=0$ for $t\in(O, T)$ , (2)

$u|_{t=0}=a$ , $\theta|_{t=0}=h$ . (3)

Here, $u=u(x, t)$ is the velocity vector, $p=p(x, t)$ is the pressure and $\theta=\theta(x, t)$ is the
temperature; $v,$ $\kappa,$ $\alpha,$ $\rho$ and $g=g(x)$ are the kinematic viscosity, the thermal conductivity,
the coefficient of volume expansion, the density at $\theta=\Theta_{0}$ and the gravitational vector,

respectively.
Hishida [2] and Hishida-Yamada [3] studied the exterior problem for (HCE) and

proved the global existence of the strong solution of (IVP) when $K$ is a ball, while the
second author of our present paper has recently shown in [6] (which is her Master
thesis) the existence of a weak solution of (IVP) for (HCE) in the case that $K$ is a
compact set with a smooth boundary of class $C^{2}$ . In \={O}eda-Matsuda [10], we announced
the existence result ($m=2$ or 3) together with the uniqueness of a weak solution for the
2-dimensional problem. In the present paper, we will give details of proofs of the results
announced in [10], and furthermore, show the uniqueness theorem of a weak solution
for the 3-dimensional problem. As the equations (1) tell us, (HCE) is the system which
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