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1. Introduction.

Let M be a compact connected n-manifold and .# (M) the space of Riemannian
metrics on M. We study the critical metrics of the following functional;
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where R, is the scalar curvature of g and peN.
The first variation formula for &7 is
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where Ric, is the Ricci tensor of g. Taking the divergence of (i) with respect to g, we have
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where R?= |, RFdv,/{, dv,. The equation (ii) is also the first variation formula for
&?|c, where C is a conformal class of #(M).

Obviously, if R,=0 or g is an Einstein metric, the metric g satisfies the equation
(i). A metric of constant scalar curvature satisfies the equation (ii). The question is
whether the converses are true or not.

The case p=1 is well-known (e.g. [5]). When n=2, ¥ ?|. was studied by Calabi
([4], see also Section 3). If n>4 and p=n/2, the answer is positive (e.g. [2]). If n=3,
p=2 and R, does not change the sign, then the metric which satisfies (i) is of constant
scalar curvature ([1]). According to Anderson ([1]), the general case is an open ques-
tion.

In this paper, we show the following results which are extentions of Anderson’s
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