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Introduction.

In this part, we will discuss and determine the signature $\tau(M)$ and the g-signature
$g-\tau(M)$ (See [AS]) ofevery compact oriented symmetric space $M$ , (making the description
of $\tau(M)$ in [N88] intelligible, in particular) as well as self-intersections SI$(N;M)$ of
subspaces $N$ in $M$ which are beautifully related to $g-\tau(M)$ by the g-signature theorem
or the generalized Lefschetz fixed point theorem of Atiyah-Singer [AS] in case $g$ is an
orientation-preserving involution of $M$ . An example of geometric applications will be
added.

Our method is basically to apply the Atiyah-Singer theory [AS], especially the
g-signature theorem (1.3) below to our geometric results ([N88] and others). We have
determined those invariants for each space in a few ways. The value of $\tau(M)$ was stated
in [N88] with a very brief explanation (involving a careless mistake), but we will give
a more detailed proof. Informations on $g-\tau(M)$ and on SI$(N;M)$ are reciprocal to some
extent. The self-intersection SI$(N;M)=[B]$ is realized by a (symmetric) subspace $B$ of
$M$ (in the cases discussed in this paper).

0.1 THEOREM ([N88], 10.1). If the signature $\tau(M)(\geqq 0)$ is positive for a simple
l-connected $M$ , then $\tau(M)$ equals the indicated value below: $\frac{1}{2}\tau(G_{2p}^{o}(R^{2n}))=\tau(G_{p}(C^{n}))=$

$\tau(G_{p}(H^{n}))=\chi(G_{p}(R^{n}))$ , the Euler number of $G_{p}(R^{n}),$ $\tau(EII)=4,$ $\tau(EIII)=3,$ $\tau(EVI)=7=$

$\tau(EVIII),$ $\tau(EIX)=8$ , and $\tau(FII)=1=\tau$ (GI). Here the symbols for the symmetric spaces
are Cartan’s [H] with a few exceptions such as $G_{p}(\nabla)$ meaning the Grassmann manifold
of the $p$ dimensional subspaces of a vector space $V$ and $G_{p}^{o}(R^{n})$ which means that of
the oriented p-subspaces of $R^{n};G_{p}^{o}(R^{n})$ is l-connected except that it consists of two
points for $p=0$ or $n$ and $G_{1}^{o}(R^{2})$ is a circle. The known Euler number $\chi(G_{p}(R^{n}))$ equals
the binomial coefficient ${}_{[n/2]}C_{[p/2]}$ if $p(n-p)=\dim G_{p}(R^{n})$ is even and $0$ otherwise.

0.2 COROLLARY. One has

$(0\leqq)3\tau(M)\leqq\chi(M)$ if dim $M>0$ ,

and this is sharp. In particular, the equality
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