Токуо Ј. Матн. Vol. 22, No. 1, 1999

The Involutions of Compact Symmetric Spaces, IV

Tadashi NAGANO and Makiko Sumi TANAKA

Sophia University and International Christian University

Introduction.

In this part, we will discuss and determine the signature $\tau(M)$ and the g-signature $g-\tau(M)$ (See [AS]) of every compact oriented symmetric space M, (making the description of $\tau(M)$ in [N88] intelligible, in particular) as well as self-intersections SI(N; M) of subspaces N in M which are beautifully related to $g-\tau(M)$ by the g-signature theorem or the generalized Lefschetz fixed point theorem of Atiyah-Singer [AS] in case g is an orientation-preserving involution of M. An example of geometric applications will be added.

Our method is basically to apply the Atiyah-Singer theory [AS], especially the g-signature theorem (1.3) below to our geometric results ([N88] and others). We have determined those invariants for each space in a few ways. The value of $\tau(M)$ was stated in [N88] with a very brief explanation (involving a careless mistake), but we will give a more detailed proof. Informations on $g-\tau(M)$ and on SI(N; M) are reciprocal to some extent. The self-intersection SI(N; M) = [B] is realized by a (symmetric) subspace B of M (in the cases discussed in this paper).

0.1 THEOREM ([N88], 10.1). If the signature $\tau(M) (\geq 0)$ is positive for a simple 1-connected M, then $\tau(M)$ equals the indicated value below: $\frac{1}{2}\tau(G_{2p}^o(\mathbb{R}^{2n})) = \tau(G_p(\mathbb{C}^n)) =$ $\tau(G_p(\mathbb{H}^n)) = \chi(G_p(\mathbb{R}^n))$, the Euler number of $G_p(\mathbb{R}^n)$, $\tau(\text{EII}) = 4$, $\tau(\text{EIII}) = 3$, $\tau(\text{EVI}) = 7 =$ $\tau(\text{EVIII})$, $\tau(\text{EIX}) = 8$, and $\tau(\text{FII}) = 1 = \tau$ (GI). Here the symbols for the symmetric spaces are Cartan's [H] with a few exceptions such as $G_p(V)$ meaning the Grassmann manifold of the p dimensional subspaces of a vector space V and $G_p^o(\mathbb{R}^n)$ which means that of the oriented p-subspaces of \mathbb{R}^n ; $G_p^o(\mathbb{R}^n)$ is 1-connected except that it consists of two points for p = 0 or n and $G_1^o(\mathbb{R}^2)$ is a circle. The known Euler number $\chi(G_p(\mathbb{R}^n))$ equals the binomial coefficient ${n/2}C_{[p/2]}$ if $p(n-p) = \dim G_p(\mathbb{R}^n)$ is even and 0 otherwise.

0.2 COROLLARY. One has

 $(0 \leq 3\tau(M) \leq \chi(M))$ if dim M > 0,

and this is sharp. In particular, the equality

Received October 7, 1997