A Generalization of the Cauchy-Hua Integral Formula on the Lie Ball

Mitsuo MORIMOTO

International Christian University

Introduction.

First we fix notations and review known results following [3].

Put $\mathbf{E} = \mathbf{R}^{n+1}$ and $\widetilde{\mathbf{E}} = \mathbf{C}^{n+1}$ $(n \ge 2)$. We put $z \cdot w = z_1 w_1 + z_2 w_2 + \cdots + z_{n+1} w_{n+1}$ for $z \in \widetilde{\mathbf{E}}$ and $w \in \widetilde{\mathbf{E}}$, $||z||^2 = z \cdot \overline{z}$, and $z^2 = z \cdot z$. We denote by

$$L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}}$$

the Lie norm of z. We have $|z| \le |z|^2 \le L(z)^2$ for $z \in \tilde{\mathbf{E}}$. Let r > 0. We denote by

$$\tilde{B}(r) = \{ z \in \tilde{\mathbf{E}}; L(z) < r \}$$

the open Lie ball of radius r, or the classical domain of type 4 (see [1]). $\tilde{B}[r] = \{z \in \tilde{E}; L(z) \le r\}$ is called the closed Lie ball of radius r.

Let $\lambda \in \mathbb{C}$. The complex variety

$$\tilde{\mathbf{S}}_{\lambda} = \{ z \in \tilde{\mathbf{E}}; z^2 = \lambda^2 \}$$

is called the complex sphere of radius λ . We also call it the complex light cone if $\lambda = 0$. Suppose $0 < |\lambda| < r$ and put

$$\widetilde{\mathbf{S}}_{\lambda,r} = \partial(\widetilde{\mathbf{S}}_{\lambda} \cap \widetilde{B}[r]) = \{ z \in \widetilde{\mathbf{S}}_{\lambda}; L(z) = r \} , \qquad (1)$$

$$\Sigma_{\lambda,r} = \{ e^{i\theta} z; \theta \in \mathbf{R}, z \in \widetilde{\mathbf{S}}_{\lambda,r} \}.$$
 (2)

 $\tilde{\mathbf{S}}_{\lambda,r}$ and $\Sigma_{\lambda,r}$ are real analytic manifolds, $\dim_{\mathbf{R}} \tilde{\mathbf{S}}_{\lambda,r} = 2n-1$, and $\dim_{\mathbf{R}} \Sigma_{\lambda,r} = 2n$.

If $|\lambda|$ tends to r, then $\tilde{\mathbf{S}}_{\lambda,r}$ reduces to $\mathbf{S}_{\lambda} = \{\lambda x; x \in \mathbf{E}, x^2 = 1\}$ the n-dimensional sphere of radius λ and $\Sigma_{\lambda,r}$ reduces to $\Sigma_r = \{e^{i\theta}x; \theta \in \mathbf{R}, x \in \mathbf{S}_r\}$ the Lie sphere of radius r (see [2]). Note that $\dim_{\mathbf{R}} \mathbf{S}_{\lambda} = n$ and $\dim_{\mathbf{R}} \Sigma_{\lambda} = n + 1$.

Let $\mathcal{O}(\tilde{B}(r))$ be the space of holomorphic functions on $\tilde{B}(r)$ and $\mathcal{O}(\tilde{B}[r])$ the space of germs of holomorphic functions on $\tilde{B}[r]$. We endow $\mathcal{O}(\tilde{B}(r))$ with the topology of uniform convergence on compact sets and $\mathcal{O}(\tilde{B}[r])$ with the locally convex inductive limit topology: