The Equation for the Modular Curve $X_1(N)$ Derived from the Equation for the Modular Curve X(N)

Nobuhiko ISHIDA and Noburo ISHII

Osaka Prefecture University (Communicated by K. Shinoda)

Dedicated to Professor Toyokazu Hiramatsu on his 60th birthday

Introduction.

Let N be a positive integer greater than 6. Let $\Gamma(N)$ denote the principal congruence subgroup of level N and $\Gamma_1(N)$ a subgroup of $SL_2(\mathbb{Z})$ defined by

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \mod N, \ c \equiv 0 \mod N \right\}.$$

Let X(N) and $X_1(N)$ be the modular curves associated with the groups $\Gamma(N)$ and $\Gamma_1(N)$ respectively. Further let A(N) and $A_1(N)$ be the modular function fields associated with the groups $\Gamma(N)$ and $\Gamma_1(N)$ respectively. Then the field A(N) (resp. $A_1(N)$) is identified with the function field of X(N) (resp. $X_1(N)$) rational over C and A(N) is a Galois extension over $A_1(N)$ of degree N. In [3], the second author defined a family of modular functions $X_r(\tau)$ of level $2N^2$, for N and $r \in \mathbb{Z}$, $r \neq 0 \mod N$, by

(0.1)
$$X_{r}(\tau) = \exp\left(-\frac{\pi i(r-1)(N-1)}{2N}\right) \prod_{s=0}^{N-1} \frac{K_{r,s}(\tau)}{K_{1,s}(\tau)},$$

where $K_{u,v}(\tau)$ are the Klein forms of level N. For the Klein forms we refer to Kubert and Lang [5]. Define an integer ε_N by

$$\varepsilon_N = \begin{cases} 1 & \text{if } N \text{ is odd }, \\ 2 & \text{if } N \text{ is even }. \end{cases}$$

Then we showed that $X_2(\tau)^{\epsilon_N}$, $X_3(\tau)$ generate A(N) over **C**. This result was firstly proved by the second author [3] for the cases N are primes and was extended to arbitrary N greater than 6 by the first author [1]. Furthermore if N is a prime, then the authors [2] showed $X_3(\tau)$ is integral over the ring $\mathbb{Z}[X_2(\tau)]$. In general, in [1], it was shown

Received July 31, 1997