Токуо Ј. Матн. Vol. 22, No. 1, 1999

Substitution in Two Symbols and Transcendence

Kumiko NISHIOKA, Taka-aki TANAKA and Zhi-Ying WEN

Keio University and Wuhan University

1. Introduction.

Let $A = \{a_1, \dots, a_n\}$ be a finite nonempty set of symbols and let A^* and A^{ω} denote the sets of all finite words over A and all sequences $x_0x_1 \cdots x_k \cdots (x_k \in A)$, respectively. Let λ be the empty word. A substitution (over A) is a map $\sigma: A \to A^* \setminus \{\lambda\}$, which has a natural extension to $\Omega = A^* \cup A^{\omega}$ by concatenation: $\sigma(x_0x_1 \cdots) = \sigma(x_0)\sigma(x_1)\cdots$. If a_i is a prefix of $\sigma(a_i)$ and the length of $\sigma(a_i)$ is greater than 1, then there is a unique $w \in \Omega$ having a prefix a_i and being a fixed point of σ , which means that $\sigma(w) = w$. Any real algebraic irrational θ can be uniquely expressed as

$$\theta = \sum_{k=-m}^{\infty} \varepsilon_k 2^{-k} , \qquad (1)$$

where *m* is a nonnegative integer depending on θ and $\varepsilon_k = 0$ or 1. The problem we are interested in is whether the sequence $\varepsilon_0 \varepsilon_1 \cdots \in \{0, 1\}^{\omega}$ is a fixed point of any substitution over $\{0, 1\}$ or not.

Generally, for a fixed point $w = x_0 x_1 \cdots$ of the given substitution σ , we define the generating function of w for a_i by

$$f_i(z) = \sum_{k=0}^{\infty} \chi_k(w; a_i) z^k ,$$
 (2)

where $\chi_k(w; a_i) = 1$ if $x_k = a_i$, and otherwise $\chi_k(w; a_i) = 0$, so that

$$\sum_{i=1}^{n} f_i(z) = \sum_{k=0}^{\infty} z^k = \frac{1}{1-z} .$$

It is known that $f_i(z)$ $(1 \le i \le n)$ satisfy a Mahler type functional equation if σ is of constant length, which means that each $\sigma(a_i)$ $(1 \le i \le n)$ has the same length ≥ 2 , and it is also known that if σ is of nonconstant length, i.e., the lengths of $\sigma(a_i)$ $(1 \le i \le n)$ are not equal, then we can construct $g_1(z), \dots, g_n(z) \in \mathbb{Q}[[z_1, \dots, z_n]]$ satisfying a Mahler

Received July 4, 1997 Revised December 12, 1997