On Characteristic Forms of Holomorphic Foliations

Yoshikatsu KAMOZAWA and Masahide KATO*

Sophia University

1. Introduction.

Let M be a complex manifold of dimension n ($n \ge 2$) and \mathscr{F} a holomorphic foliation on M of codimension q ($q \ge 1$). We denote the normal bundle of \mathscr{F} by $v(\mathscr{F})$, and its dual by $v(\mathscr{F})^*$. Then we can define the obstruction $P_{\mathscr{F}} \in H^1(M, v(\mathscr{F})^* \otimes End(v(\mathscr{F})))$ to the existence of holomorphic projective connection $\pi = \{p_{\alpha}\}$ of $v(\mathscr{F})$. As is well-known, there always exists a C^{∞} affine connection $a = \{a_{\alpha}\}$ of $v(\mathscr{F})$, by which we can define the Chern forms $\{c_k(a)\}_{k=1}^q$ of $v(\mathscr{F})$. Similarly there always exists a C^{∞} (normal reduced) projective connection $\pi = \{p_{\alpha}\}$ of $v(\mathscr{F})$, and this defines a kind of C^{∞} characteristic forms $\{P_k(\pi)\}_{k=1}^q$ of $v(\mathscr{F})$, which we call projective Weyl forms.

In this paper, we shall show that, for any C^{∞} normal reduced projective connection $\pi = \{p_{\alpha}\}$ of $\nu(\mathcal{F})$, the projective Weyl forms are d-closed, and that there exists a C^{∞} affine connection $a = \{a_{\alpha}\}$ of $\nu(\mathcal{F})$ which satisfies the following formulae;

$$\sum_{k=0}^{q} c_k(a)t^k = \frac{(1+\alpha t)^{q+1}}{1+(\alpha-\beta)t} \sum_{k=0}^{q} P_k(\pi) \left(\frac{t}{1+\alpha t}\right)^k,$$

$$\sum_{k=0}^{q} P_k(\pi)t^k = (1-\alpha t)^q (1-\beta t) \sum_{k=0}^{q} c_k(a) \left(\frac{t}{1-\alpha t}\right)^k,$$

where $c_k(a)$ is the k-th Chern form defined by the affine connection a, and both α and β are d-closed 2-forms which represent the de Rham cohomology class $\left[\frac{1}{q+1}c_1(a)\right]$ (Theorem).

As a corollary to this theorem, in the cohomology class level, we get the formulae;

$$\sum_{k=0}^{q} [c_k(a)]t^k = (1 + [\alpha]t)^{q+1} \sum_{k=0}^{q} [P_k(\pi)] \left(\frac{t}{1 + [\alpha]t}\right)^k,$$

$$\sum_{k=0}^{q} [P_k(\pi)]t^k = (1 - [\alpha]t)^{q+1} \sum_{k=0}^{q} [c_k(a)] \left(\frac{t}{1 - [\alpha]t}\right)^k.$$

Received March 24, 1997

Revised January 21, 1999

^{*} Supported by the Grants-in-Aid for Scientific Research (C), the Ministry of Education, Science, Sports and Culture, 1998, Japan.