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1. Introduction.

Let $\Omega$ be a bounded or unbounded domain in $R^{3}$ with a smooth boundary $S$ . We
consider the system of equations

(1.1) $\left\{\begin{array}{l}\rho_{t}+v\cdot\nabla p=0\\p[v_{t}+(v\cdot\nabla)v]+\nabla p=\mu\Delta v+pf\\v=0\end{array}\right.$

in $Q_{T}=\Omega\times[0, T],$ $T>0$ , where $f(x, t)$ is a given vector field of external forces, while
the density $\rho(x, t)$ , the velocity vector $v(x, t)$ and the pressure $p(x, t)$ are the unknowns.
The viscosity coefficient $\mu$ is assumed to be a nonnegative constant.

This paper consists of two parts. In the first part, Part 1, we solve (1.1) under the
following initial-boundary conditions:

If $\mu>0$ ,

(1.2) $\left\{\begin{array}{l}v|_{s_{T}}=0\\\rho|_{\iota=0}=\rho_{0}(x)\\v|_{t=0}=v_{0}(x)\end{array}\right.$

and if $\mu=0$ ,

(1.3) $\left\{\begin{array}{l}v\cdot n|_{s_{T}}=0\\p|_{t=0}=\rho_{0}(x)\\v|_{t=0}=v_{0}(x)\end{array}\right.$

where $n$ is the unit outward normal to $S$, and $S_{T}=S\times[0, T]$ .
In the second part, Part 2, when $\Omega=R^{3}$ , we consider the Cauchy problem (1.1) and
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