Токуо Ј. Матн. Vol. 22, No. 1, 1999

Solvability of Nonstationary Problems for Nonhomogeneous Incompressible Fluids and the Convergence with Vanishing Viscosity

Shigeharu ITOH and Atusi TANI

Hirosaki University and Keio University (Communicated by Y. Maeda)

1. Introduction.

Let Ω be a bounded or unbounded domain in \mathbb{R}^3 with a smooth boundary S. We consider the system of equations

(1.1)
$$\begin{cases} \rho_t + v \cdot \nabla \rho = 0, \\ \rho[v_t + (v \cdot \nabla)v] + \nabla p = \mu \Delta v + \rho f, \\ \operatorname{div} v = 0 \end{cases}$$

in $Q_T = \Omega \times [0, T]$, T > 0, where f(x, t) is a given vector field of external forces, while the density $\rho(x, t)$, the velocity vector v(x, t) and the pressure p(x, t) are the unknowns. The viscosity coefficient μ is assumed to be a nonnegative constant.

This paper consists of two parts. In the first part, Part 1, we solve (1.1) under the following initial-boundary conditions:

If $\mu > 0$,

(1.2)
$$\begin{cases} v|_{S_T} = 0, \\ \rho|_{t=0} = \rho_0(x), \\ v|_{t=0} = v_0(x), \end{cases}$$

and if $\mu = 0$,

(1.3)
$$\begin{cases} v \cdot n|_{S_T} = 0, \\ \rho|_{t=0} = \rho_0(x), \\ v|_{t=0} = v_0(x), \end{cases}$$

where *n* is the unit outward normal to *S*, and $S_T = S \times [0, T]$.

In the second part, Part 2, when $\Omega = \mathbf{R}^3$, we consider the Cauchy problem (1.1) and

Received March 10, 1997 Revised November 13, 1998