Токуо Ј. Матн. Vol. 22, No. 2, 1999

Formulae for Relating the Modular Invariants and Defining Equations of $X_0(40)$ and $X_0(48)$

Takeshi HIBINO

Waseda University (Communicated by T. Suzuki)

1. Introduction.

Let N be a positive integer and let $X_0(N)$ be the modular curve over **Q** associated to the modular group $\Gamma_0(N)$. As a defining equation of $X_0(N)$, we have the modular equation of level N, which is written in the following form:

$$F_N(j, j_N) = 0$$
, $F_N(S, T) \in \mathbb{Z}[S, T]$,

where j=j(z) is the modular invariant, $j_N = j_N(z) = j(Nz)$, and z is the natural coordinate on $\mathscr{H} = \{z \in \mathbb{C} \mid Im(z) > 0\}$. This equation has many useful properties, but its degree and coefficients are too large to be applied to practical calculations on $X_0(N)$. In the case of a hyperelliptic modular curve, its more manageable defining equation, which we call the normal form of the hyperelliptic curve, has been given by N. Murabayashi ([7]) and M. Shimura ([11]). In particular, for a hyperelliptic curve of the type $X_0(N)$, T. Hibino and N. Murabayashi ([4]) found a certain relation between the modular equation of level N and its normal form except for N=40, 48. The relation gives a formula expressing j in terms of the functions x, y on $X_0(N)$ which satisfy the normal form $y^2 = f(x), f(T) \in \mathbb{Q}[T]$.

In this paper, we deal with the remaining cases to complete our task. To be specific, for the defining equations $y^2 = x^8 + 8x^6 - 2x^4 + 8x^2 + 1$, $y^2 = x^8 + 14x^4 + 1$ for N = 40, 48, respectively, we give formulae expressing *j* in terms of these *x*, *y* (Theorems 4.1, 4.2).

2. Basic idea for expressing *j*.

In the following, we sketch our idea ([4]) which is based on the computation of the Fourier coefficients of some modular forms (cf. [3], [5], [9], [12]). Let Aut($X_0(N)$) be the group of automorphisms of $X_0(N)$ over C. For a positive integer $d \neq 1$ dividing

Received June 23, 1997 Revised April 22, 1999