Tokyo J. Math. Vol. 23, No. 1, 2000

Dual Class of a Subvariety

Tatsuo SUWA

Hokkaido University (Communicated by M. Oka) Dedicated to the memory of N. Sasakura

Let *M* be a complex manifold of dimension *n* and *E* a holomorphic vector bundle of rank *k* over *M*. If *s* is a regular section of *E* (cf. [F] B.3), it defines an analytic subspace *X* of pure codimension *k* in *M*. It is "well-known" that, if *M* is compact, then the top Chern class $c_k(E)$ of *E* corresponds to the homology class [*X*] of *X* under the Poincaré duality $P: H^{2k}(M; \mathbb{C}) \xrightarrow{\sim} H_{2n-2k}(M; \mathbb{C})$ (in fact this holds with **Z** coefficients). The nature of the proof of this fact depends on how one defines the class $c_k(E)$ (cf. [G] §5 for the projective non-singular case, [F] §14.1 for the general case in the algebraic category and [GH] Ch. 1, §1 for the case k = 1 in the complex analytic category). In this article, we take up the definition of Chern classes via the Chern-Weil theory and give a relatively elementary proof of a more precise statement in the complex analytic category. Namely, we prove the following. Let *V* denote the support of *X*, then there is a canonical localization $c_k(E, s)$, in the relative cohomology $H^{2k}(M, M \setminus V; \mathbb{C})$, of $c_k(E)$ with respect to *s* and, if *V* is compact (*M* may not be), the class $c_k(E, s)$ corresponds to [*X*] under the Alexander duality

$$A: H^{2k}(M, M \setminus V; \mathbb{C}) \xrightarrow{\sim} H_{2n-2k}(V; \mathbb{C})$$

(Theorem 4.2). If M is compact, we have the commutative diagram

~ .

$$\begin{array}{cccc} H^{2k}(M, M \setminus V; \mathbb{C}) & \stackrel{j^*}{\longrightarrow} & H^{2k}(M; \mathbb{C}) \\ & & & & \downarrow \downarrow P \\ & & & & \downarrow \downarrow P \\ H_{2n-2k}(V; \mathbb{C}) & \stackrel{i_*}{\longrightarrow} & H_{2n-2k}(M; \mathbb{C}) \end{array}$$

where *i* and *j* denote the inclusions $V \hookrightarrow M$ and $(M, \emptyset) \hookrightarrow (M, M \setminus V)$, respectively. Since $j^*(c_k(E, s)) = c_k(E)$, we recover the result we first mentioned. For an application, see [S2].

As related topics, we discuss intersections of analytic subspaces. We also prove a duality theorem when V as above may not be compact, considering X as a relative cycle in M modulo $M \setminus S$ for a compact connected component S of its singular set (Theorem 6.4). This fact is effectively used in [BLSS]. The proofs of the above results are done in the framework of Čech-de Rham cohomology.

Received June 1, 1998