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Introduction.

In [12], Kondo determined the value of Gaussian sum for every irreducible representation
of $GL_{n}(q)$ and Macdonald also treated this problem in [14]. Recently in a series of papers,
Kim-Lee [4], Kim ([5], [6], [7], [8], [9], [10], [11]), and Lee-Park [13] determined the values
of Gaussian sums for one-dimensional representations of finite classical groups and $G_{2}(q)$ .

In this note, we firstly show that a character sum over a finite reductive group associated
with the generalized character $R_{T,\theta}$ of Deligne-Lusztig is reduced to a character sum over
a torus. Applying this result to Gaussian sums and Kloosterman sums attached to finite
classical groups, we obtain explicit formulae of these sums related with $R_{T,\theta},$ $when\pm R_{T,\theta}$

is irreducible. Also combining this result with the Davenport-Hasse type relations of
Kloosterman sums and unitary Kloosterman sums proved in [2], we can explicitly determine
the values of these sums for every irreducible character if the rank of the group is low. As
an example, we give a table of Gaussian sums attached to $Sp_{4}(q)$ , with $q$ odd. In Section 3,
Kloosterman sums over $GL_{n}(q)$ are considered, and the properties and conjectures of these
sums for unipotent characters are given.
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Charles W. Curtis for their valuable discussions and comments.

NOTATION. We shall use the similar notation as in [2]. In particular $F_{q}$ denotes a finite
field with $q$ elements, and $F_{q^{m}}$ the extension field of degree $m$ of $F_{q}$ , contained in a fixed
algebraic closure $\overline{F}_{q}$ of $F_{q}$ . $C_{m}=\{\alpha\in F_{q^{2m}} : \alpha^{q^{m}+1}=1\}$ is the cyclic group of order
$q^{m}+1$ in $F_{q^{2m}}^{x}$ and we will write $C=C_{1}$ . Ifm divides $n,$ $Tr_{F_{q^{n}}/F_{q^{m}}}$ : $F_{q^{n}}\rightarrow F_{q^{m}}$ is
the trace map. We fix a nontrivial additive character $\chi$ of $F_{q}$ throughout this paper, and put
X $(m)=\chi\circ Tr_{F_{q^{m}}/F_{q}}$ , the canonical lift of $\chi$ to $F_{q^{m}}$ . For a multiplicative character $\pi$ of $F_{q}^{\times}$ ,
the sum

$K(\chi, \pi, a)=\sum_{st=a}\chi(s+t)\pi(s)$ , $a\in F_{q}^{\times}$
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