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1. Introduction.

In this note all spaces and homotopies are based. We denote by tx the homotopy class of
the identity map of a space X. We denote by X' X a suspension of X. The self-homotopy set
[¥X, X X]is a group, called a track group ([1]). The order of txx is called the suspension
order of X ([8]). Let P" be the real n-dimensional projective space. The author proved that
the suspension order of >2P% is 8 ([6]). The purpose of this note is to show the following.

THEOREM 1.1. The suspension order of XP% is 8.
As a direct consequence of this theorem, we have ([3])

COROLLARY 1.2. The suspension order of ZP?" is 2°@™ where ¢(m) stands for the
number of integers k satisfying 1 <k <mandk=0,1,20r4 mod 8.

The author wishes to thank the referee for the useful advices helping improve the manu-
script.

2. A review of the result of [6].

First we fix the notation. We denote by iy ,, : P* < P" for k < n the inclusion map and
by y» : S — P" the covering map. We note that

imn©ikm =ikn for k<m<n and irp,oyy=0 fork<n. €))

We often use the same letter for a mapping and its homotopy class. We set ¢, = tgn.
Let 72 € m3(S?) and v4 € m7(S*) be the Hopf maps. We set 5, = X2, (n > 2),
n,z, = NpoNns1 and v, = T 4vy (n > 4). We recall the following result about the 2-primary
components of homotopy groups of spheres ([7]):

Tn(S™) =Z{tn}) = 1), 73(S?) =Z{nz}, 7as1(S") =Zo{ns} (n = 3),
Tnt2(S™) = Zo{n?} (n = 2), 7me(S?) = Za{v'}, m7(S*) = Z{vs} ® Zs{ZV'},
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