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1. Introduction.

The purpose of this paper is to study numerical properties of algebraic curves on rational
surfaces. Here by curves and surfaces we mean projective irreducible varieties of dimension
1 and 2, respectively, which are defined over the field of complex numbers. We shall study
pairs $(S, D)$ of projective non-singular rational surfaces $S$ and curves $D$ on $S$ .

First, we recall some basic notions and results conceming birational geometry of pairs.
Let $\Sigma_{b}$ denote a $P^{1}$ -bundle over $P^{1}$ that has a minimal section $\Delta_{\infty}$ with $\Delta_{\infty}^{2}=-b\leq 0$ .
Furthermore, let $C$ be a curve on $\Sigma_{b}$ . The Picard group of $\Sigma_{b}$ is generated by the section
$\Delta_{\infty}$ and a fiber $F_{u}=\rho^{-1}(u)$ of the $P^{1}$ -bundle $\Sigma_{b}$ where $\rho$ is the projection (cf. [Hl, p. 370,
Proposition 2.3]). Then $C\sim\sigma\Delta_{\infty}+eF_{u}$ for some integers $\sigma$ and $e$ . Here the symbol\sim
indicates linear equivalence between divisors. If $b\geq 1,$ $(\sigma, e)$ is uniquely determined. But
when $b=0$ , the $\Sigma_{0}$ has two $P^{1}$ -bundle structures. In this case, we may assume that $ e\geq\sigma$ .
Then $(\sigma, e)$ is uniquely determined and we say that $(\Sigma_{b}, C)$ has the degree $(\sigma, e)$ . Moreover,
let $m_{1}$ denote the highest multiplicity of singular points of $C$ . The pair $(\Sigma_{b}, C)$ is said to be
#-minimal if $\sigma\geq 2m_{1}$ and $e-\sigma\geq bm_{1}$ (cf. [I1]). The last condition is always satisfied
whenever $b\geq 2$ .

Let $D$ be a non-singular curve on $S$ . Then the pair $(S, D)$ is said to be relatively minimal,
whenever the intersection number D. $E\geq 2$ for any exceptional curve $E$ of the first kind on
$S$ such that $E\neq D$ (cf. [I1], Theorem 1, [S]). Suppose that $(S, D)$ is a relatively minimal
pair such that $S\neq P^{2}$ and $\kappa[D]\geq 0$ where $\kappa[D]$ denotes $\kappa(K+D, S)$ . Then there exists
a #-minimal pair $(\Sigma_{b}, C)$ such that $(S, D)$ is derived from $(\Sigma_{b}, C)$ by resolving singularities
on $C$ in a shortest way (cf. [I1]). In this case, we say that $(\Sigma_{b}, C)$ is a #-minimal model of
$(S, D)$ . The structure of $(S, D)$ with $\kappa[D]\leq 1$ has been precisely determined by Iitaka in
[I1] and [I2]. If $\kappa[D]=2$ , then relatively minimal pairs are always minimal (see [I1]), and
hence, $D^{2}$ is invariant for birational transformation of pairs. Note that if $\kappa[D]\geq 0$, then $\sigma$
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