On Numerical Types of Algebraic Curves on Rational Surfaces

Osamu MATSUDA

Gakushuin University

(Communicated by K. Akao)

1. Introduction.

The purpose of this paper is to study numerical properties of algebraic curves on rational surfaces. Here by curves and surfaces we mean projective irreducible varieties of dimension 1 and 2, respectively, which are defined over the field of complex numbers. We shall study pairs (S, D) of projective non-singular rational surfaces S and curves D on S.

First, we recall some basic notions and results concerning birational geometry of pairs. Let Σ_b denote a \mathbf{P}^1 -bundle over \mathbf{P}^1 that has a minimal section Δ_∞ with $\Delta_\infty^2 = -b \leq 0$. Furthermore, let C be a curve on Σ_b . The Picard group of Σ_b is generated by the section Δ_∞ and a fiber $F_u = \rho^{-1}(u)$ of the \mathbf{P}^1 -bundle Σ_b where ρ is the projection (cf. [H1, p. 370, Proposition 2.3]). Then $C \sim \sigma \Delta_\infty + e F_u$ for some integers σ and e. Here the symbol \sim indicates linear equivalence between divisors. If $b \geq 1$, (σ, e) is uniquely determined. But when b = 0, the Σ_0 has two \mathbf{P}^1 - bundle structures. In this case, we may assume that $e \geq \sigma$. Then (σ, e) is uniquely determined and we say that (Σ_b, C) has the degree (σ, e) . Moreover, let m_1 denote the highest multiplicity of singular points of C. The pair (Σ_b, C) is said to be #-minimal if $\sigma \geq 2m_1$ and $e - \sigma \geq bm_1$ (cf. [I1]). The last condition is always satisfied whenever $b \geq 2$.

Let D be a non-singular curve on S. Then the pair (S, D) is said to be *relatively minimal*, whenever the intersection number $D \cdot E \geq 2$ for any exceptional curve E of the first kind on S such that $E \neq D$ (cf. [I1], Theorem 1, [S]). Suppose that (S, D) is a relatively minimal pair such that $S \neq \mathbb{P}^2$ and $\kappa[D] \geq 0$ where $\kappa[D]$ denotes $\kappa(K + D, S)$. Then there exists a #-minimal pair (Σ_b, C) such that (S, D) is derived from (Σ_b, C) by resolving singularities on C in a shortest way (cf. [I1]). In this case, we say that (Σ_b, C) is a #-minimal model of (S, D). The structure of (S, D) with $\kappa[D] \leq 1$ has been precisely determined by Iitaka in [I1] and [I2]. If $\kappa[D] = 2$, then relatively minimal pairs are always minimal (see [I1]), and hence, D^2 is invariant for birational transformation of pairs. Note that if $\kappa[D] \geq 0$, then σ

Received November 5, 1999

Revised March 15, 2001

The result of the paper is part of the doctoral thesis submitted to Gakushuin University, on December 24, 1998.